

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

This thesis was performed at the MOVES Institute

Approved for public release. Distribution is unlimited.

USMC INVENTORY CONTROL USING OPTIMIZATION

MODELING AND DISCRETE EVENT SIMULATION

by

Timothy A. Curling

September 2016

Thesis Advisor: Arnold Buss

Thesis Co-Advisor: Javier Salmeron

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to

Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA

22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

September 2016
3. REPORT TYPE AND DATES COVERED

Master’s Thesis

4. TITLE AND SUBTITLE

USMC INVENTORY CONTROL USING OPTIMIZATION MODELING AND

DISCRETE EVENT SIMULATION

5. FUNDING NUMBERS

6. AUTHOR(S) Timothy A. Curling

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A
10. SPONSORING/MONITORING

 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy

or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

 Marine Corps Installation and Logistics Command is seeking assistance to improve operations within Marine

Corps Maintenance Production plants. The problem addressed in this thesis deals with production lines: there must be

a proper balance of parts on hand and inventory costs to ensure optimal production output. This problem becomes

increasingly difficult to solve as production-line complexity increases and overall budget flexibility decreases. As the

Marine Corps enters a time of fiscal austerity and reduced overseas combat operations, it is critical to optimize its

processes so major end items are refurbished in the quickest and most cost-effective manner, thereby ensuring

maximum combat effectiveness.

 This research focuses on developing a proof of concept analytical tool to better facilitate order management of

repair parts. This tool integrates optimization and discrete-event simulation. This construct can potentially provide an

effective means in improving order management decisions. However, the effectiveness of the tool is contingent on

accurate vehicle condition history, parts order history, and/or future estimated parts shipping dates. Information

derived from the analysis can be used to make recommendations for reorder policy, enable future model development,

and improve the overall maintenance production process.

14. SUBJECT TERMS
Optimization, Discrete Event Simulation, inventory management, Marine Depot Maintenance

Command

15. NUMBER OF

PAGES
99

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT
Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE

Unclassified

19. SECURITY

CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UU

NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)

 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release. Distribution is unlimited.

USMC INVENTORY CONTROL USING OPTIMIZATION MODELING AND

DISCRETE EVENT SIMULATION

Timothy A. Curling

Major, United States Marine Corps

B.S., University of Utah, 2006

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN

MODELING, VIRTUAL ENVIRONMENTS, AND SIMULATION

from the

NAVAL POSTGRADUATE SCHOOL

September 2016

Author: Timothy A. Curling

Approved by: Arnold Buss

Thesis Co-Advisor

Javier Salmeron

Co-Advisor

Peter J. Denning

Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Marine Corps Installation and Logistics Command is seeking assistance to

improve operations within Marine Corps Maintenance Production plants. The problem

addressed in this thesis deals with production lines—there must be a proper balance of

parts on hand and inventory costs to ensure optimal production output. This problem

becomes increasingly difficult to solve as production-line complexity increases and

overall budget flexibility decreases. As the Marine Corps enters a time of fiscal austerity

and reduced overseas combat operations, it is critical to optimize its processes so major

end items are refurbished in the quickest and most cost-effective manner, thereby

ensuring maximum combat effectiveness.

This research focuses on developing a proof of concept analytical tool to better

facilitate order management of repair parts. This tool integrates optimization and discrete-

event simulation. This construct can potentially provide an effective means in improving

order management decisions. However, the effectiveness of the tool is contingent on

accurate vehicle condition history, parts order history, and/or future estimated parts

shipping dates. Information derived from the analysis can be used to make

recommendations for reorder policy, enable future model development, and improve the

overall maintenance production process.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

A. PROJECT DESCRIPTION AND BACKGROUND1

1. Plant Utilization MCLC Project Background1

2. MDMC Background ..2

B. THESIS OBJECTIVE AND SCOPE ...2

1. Thesis Scope ..3

2. Literature Review ..4

II. METHODOLOGY ..11

A. OPTIMIZATION MODELING ...11

1. Decisions..11

2. Constraints..12

3. Objective ...12

4. Optimization Model Format ...12

5. CPIOM Explained ...13

B. DISCRETE EVENT SIMULATION ...15

1. States ...15

2. Events ..16

3. Scheduling Relationship and Time Advance17

4. Simulation Parameters ..18

5. Event Graphs ..18

6. Entities ..19

C. JOINT OPTIMIZATION AND SIMULATION AND MODELING20

1. Optimization and DES Intrinsic Link ..20

2. Monte Carlo Simulation with CPIOM ...22

a. Model Cross Verification ..22

b. Improved Statistical Analysis..24

III. IMPLEMENTATION ...27

A. DEVELOPMENT TOOLS ...28

1. GAMS and Cplex ...28

2. LPSolve ...28

3. Java Based Tools ..29

B. JOINT OPTIMIZATION AND DES CONSTRUCT29

1. Implementation Overview ...29

2. Termination Criterion ...30

3. Concept Example ...32

 viii

C. OMT PROGRAM AND DES MODEL EXPLAINED33

1. Model Scenario ...33

2. OMT Program Requirements ...34

3. DES Entities ..35

4. DES Parameters ...35

5. DES State Space and Statistical Information36

a. Arrival Queue Delay ...36

b. Arrival Queue ..36

c. Assembly Queue Delay..37

d. Assembly Queue ..37

e. PEI Time in System...37

f. PEIs Completed ...38

g. Total PEIs Entering System ...38

h. Number of Available Bays ..38

i. Parts Inventory ..38

j. Part Order Quantity ..39

k. Deficient Parts Quantity ...39

6. DES Event Graph ..39

7. PEI Arrival Process Event Graph ..42

a. Run Event ..43

b. Arrival Event ...43

c. PEI Creation Event ...44

d. PEI Arrival Event..44

8. PEI Production Process Event Graph..45

a. Run Event ..45

b. PEI Arrival Event..45

c. Start Disassembly Event..46

d. Finish Disassembly Event ...46

e. Start Assembly Event ..46

f. Finish Assembly Event..47

g. PEI Complete Event ..47

h. Optimize Event ..47

i. Arrival Event ...48

j. Compute Orders Event ..48

k. Order Parts Event..49

l. Parts Arrival Event..49

D. PROGRAMMING IMPLEMENTATION ..49

1. Order Management Tool Data Entry ..49

2. Simulation Time ...50

3. Java Classes ..50

 ix

a. Input Data Processor Class ..50

b. Comma Separated Value (.csv) File Creator Class51

c. Inventory Management Class ...51

d. Optimizer Class ...51

e. Order Management Class ...52

f. Lead-Time Calculator Class ...52

g. Lead-Time Selector Class ...52

h. PEI Class ...52

i. Arrival Process Class ..53

j. PEI Arrival Process Class...53

k. PEI Production Process Class ..53

l. PEI Condition Selector Class ...53

m. NIIN Availability Check Class ...53

n. Simkit Chart Factory Class...53

o. Histogram Class ..54

p. Run PEI Production Process Class ..54

4. OMT Statistical Tracking ...54

IV. TESTING AND ANALYSIS ...55

A. DATA ANALYSIS AND VALIDATION ..55

1. Unserviceable Parts Distribution..55

2. Order History Analysis..57

B. PROGRAM VERIFICATION ...58

1. Unserviceable Parts Distribution CSV File59

2. CPIOM Failures for Large NIIN Orders and PEI Quantities59

3. Elimination of Analyzed NIIN for Insufficient Data59

4. Future Negative Parts Balances ..60

C. CPIOM AND DES INTERFACE VALIDATION60

D. SCENARIO ..60

E. STATISTICAL OUTPUT ...61

1. Simulation Steady State ...61

2. Average PEI Delay in Arrival Queue ...63

3. Average PEI Delay in Assembly Queue ...64

4. Average PEI Time in System ..65

5. PEI Production Line Average Utilization Rate66

6. PEI Production Rate ..67

7. Other Metrics ...68

V. CONCLUSIONS, RECOMMENDATIONS, AND FUTURE WORK69

 x

APPENDIX. CPIOM MATHEMATICAL FORMULATION ..71

A. INPUT DATA: INDICES, INDEX SETS AND PARAMETERS71

1. Approximation of Probability Distribution for Replaceable

Parts ...71

2. Decision Variables ..73

3. Formulation ..73

a. Formulation of Chance Constraints74

LIST OF REFERENCES ..75

INITIAL DISTRIBUTION LIST ...79

 xi

LIST OF FIGURES

Figure 1. Interaction between DES and optimization model. D-E is the same as

DES. ...5

Figure 2. Four-step methodology for SO concept development.6

Figure 3. SO construct example one. ..7

Figure 4. SO construct example two. ..8

Figure 5. This sample output probability distribution for the CPIOM reflects the

chance a certain NIIN will have no more than a certain stock-out.15

Figure 6. This graph depicts the algorithm within a DES of processing events on an

event list. ..17

Figure 7. Event Graph for multiple server queue with citation19

Figure 8. CPIOM output results for the baseline scenario. ...23

Figure 9. From [1], Monte Carlo simulation output for total stock-out cost for the

baseline scenario. ...23

Figure 10. Monte Carlo simulation output for total safety stock cost for the baseline

scenario. ...24

Figure 11. An example of the OMT joint construct. CPIOM is applied throughout the

DES as dictated by the user. ..31

Figure 12. The PEI arrival process event graph programmatically outlines the process

of generating a PEI entity. ...40

Figure 13. The PEI production process event graph programmatically outlines the

production process for a PEI entity. ...41

Figure 14. The probability distribution of NIIN 015421278 for 12 vehicles (36 parts)

is approximately normal when using a binomial distribution.56

Figure 15. Distribution based on actual data for four different torsion bars.

Histograms indicate part failures for torsion bars are not independent. If

one torsion bar is in serviceable condition, then all torsion bars are likely

serviceable. The converse is true for an unserviceable torsion bar.56

Figure 16. Graph shows the difference between an independent relationship and a

dependent relationship for NIIN 015421278. ..57

Figure 17. Order analysis from MDMC provided data. This figure provides a

snapshot of the order history for a required NIIN..58

Figure 18. Steady state analysis for the scenario required the simulation to run for

four years before reaching a steady state. ..62

 xii

Figure 19. Simulation results reflect a relatively small PEI delay in the arrival queue.

The average delay is about seven work days for 13.5 percent of the

simulation runs. In rare instances, delays of up to 27 workdays occur.63

Figure 20. PEI average delay within the assembly Queue. The simulation results in

about 45 percent of simulation runs having an average delay ranging from

seven to ten workdays. ...64

Figure 21. Average total time of a PEI in the system. Managers can expect overall

production to be delayed by 12 to 22 days in 57 percent of simulation

runs. Within the scenario, it takes 50 work days to produce a PEI on time. ...65

Figure 22. Work-bay utilization rate. During 14 percent of all simulation runs, the

average utilization rate for the production line is 100 percent. All runs

have a bay utilization rate greater 99 percent. ...67

Figure 23. Histogram for production rate. The simulation reflects over 90 percent of

runs will fall short of the full production rate. ...68

 xiii

LIST OF TABLES

Table 1. List of parameters for the arrival process and production process event

graphs. ..42

Table 2. List of state variables for the arrival process and production process event

graphs. ..42

Table 3. This table reflects the key scenario input variables used for the OMT

demonstration. ..61

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

AAV Amphibious Assault Vehicle

CPIOM Critical Part Inventory Optimization Model

DES Discrete Event Simulation

GAMS General Algebraic Modeling System

IDE Integrated Development Environment

MCLC Marine Corps Logistics Command

MDMC Marine Depot Maintenance Command

MOVES Modeling, Virtual Environments, and Simulation

NIIN National Item Identification Number

OMT Order Management Tool

PEI Principal End Item

POI Poor Obfuscation Implementation

SO Simulation Optimization

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

I would like to thank my advisors Arnold Buss and Javier Salmeron. Without their

dedicated and patient support, this thesis would not be possible. I also would like to thank

Huntley Bodden and the staff of Marine Depot Maintenance Command who assisted me.

I especially want to thank my wife, Joanna Curling, for her dedicated and loving support

throughout my career. I would not be the person I am without her.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

This thesis develops the framework for an order management tool utilizing

Discrete Event Simulation (DES) and optimization modeling. The goal is to improve

order management policy within Marine Depot Maintenance Command (MDMC). This

chapter provides an introduction of the overall project from which this thesis is derived

and a background of the MDMC organization. This introduction yields an understanding

of the existing problem being addressed. In addition, a brief discussion of the current

techniques in which optimization and simulation are used to improve supply chain and

inventory management processes is provided. This includes a discussion about previous

research aimed specifically at improving overall MDMC plant operations.

A. PROJECT DESCRIPTION AND BACKGROUND

This section provides details concerning the origins of this thesis project, as

discussed in the original project report [1]. The section discusses MDMC history,

mission, and organizational structure.

1. Plant Utilization MCLC Project Background

This thesis grew out of an overarching project titled “Plant Utilization at Marine

Corps Logistics Command” [1], sponsored by the Chief of Naval Operations with a

program execution date of November 2013 through December 2014. The official

customer of this project was Marine Corps Logistics Command (MCLC) Installations and

Logistics. MCLC contacted the Naval Postgraduate School in March of 2013 soliciting

proposals for research on improving plant capacity. The original proposal submitted by

Naval Postgraduate School principal investigators included developing “mathematical

models to guide plant design and utilization at MCLC, including optimal levels of

physical capacity, equipment, manning and operations” [1]. After meeting with MDMC

personnel at maintenance production plant Barstow in April 2014, the principal

investigators determined the primary area of interest to be the management of critical

repair parts. The difficulties of MDMC to procure critical repair parts results in stock-out

situations. In addition, budgets are diminished because of unnecessary safety stock levels.

 2

The primary focus of the project was to improve order management policy using

analytical tools. This thesis focuses on the ordering of varying part types or National Item

Identification Numbers (NIINs) using optimization. The goal is to minimize stock-out

situations when stock levels are subject to budgetary constraints. As a result, maximum

production output is facilitated. To this end, the optimization modeling tool named

Critical Part Inventory Optimization Model (CPIOM) has been developed by the

principal investigators to address this problem. CPIOM is discussed in more detail within

Chapter II and Appendix A of this thesis.

The principal investigators solicited for graduate student participation to expand

CPIOM utilizing simulation. This thesis focuses on using DES to provide additional

insight into the problem, thereby allowing further improvement in inventory management

policy at MDMC. As with the CPIOM, a detailed explanation of DES along with how it

is merged with CPIOM will be provided in Chapters II and III of this thesis.

2. MDMC Background

MDMC is a subordinate organization of MCLC consisting of two maintenance

production plants located in Barstow, CA, and Albany, GA. Until 2012, the two

production plants operated independently. With a shrinking Department of Defense

budget and demand by the Commandant of the Marine Corps to be good stewards of

national resources, there is a greater need for MDMC to more efficiently and effectively

reconstitute the Marine Corps with refurbished critical equipment necessary to

accomplishing the Marines overall mission [2].

B. THESIS OBJECTIVE AND SCOPE

This thesis seeks to assist MDMC in improving its capability to maximize

production mission by utilizing mathematical and analytical methods such as

optimization modeling and DES. These methods have the potential to empower MDMC

leaders in make better informed decisions concerning plant operations. The specific

objective of this thesis is to implement the joint CPIOM and DES construct in order to

facilitate order management decisions. In particular, the objective of CPIOM is to

minimize the chance of parts being out of stock (i.e., reducing stock-out situations). The

 3

importance of this joint construct is explained in Chapter II, while Chapter III provides

specifics of how the CPIOM and DES concept is implemented.

Additional objectives focus on more easily enabling MDMC to utilize the

resources produced by this thesis. This includes facilitating data analysis by representing

output data graphically, utilizing Excel spreadsheets for user input, and maximizing the

use of open-source resources. During a visit with MDMC in December of 2014, it was

noticed that Excel spreadsheets are used extensively by MDMC personnel. For this

reason, they were also used for DES data entry to facilitate integration with order

management operations. This is accomplished using the Apache open-source library

POI [3]. In order to facilitate quick data analysis, the Order Management Tool (OMT)

provides a graphical interface in which statistical output is represented through a series of

histograms. These are generated using the JFreeChart open-source library [4]. Finally, the

DES is developed utilizing the open-source library SimKit [5]. By using open-source

resources, the dependency on proprietary software is reduced, thereby allowing MDMC

more control in developing future iterations of the tool.

1. Thesis Scope

The overall scope of this thesis is to develop and implement the basic

programming infrastructure required to produce an OMT. While the ultimate goal would

be to facilitate all higher fidelity production lines for each Principle End Item (PEI) type

and its associated NIINs, the initial scope in developing OMT must be limited to only a

handful of repair part types or NIINs and a single PEI. This will allow for easier

verification of CPIOM, DES, and joint construct functionality.

In order to establish a baseline in developing the CPIOM, the model is initially

developed using historical data from five NIINs associated with the Amphibious Assault

Vehicle (AAV). As discussed later in Chapter II, this small test sample provides critical

information in relation to how the CPIOM formulates a distribution of required quantities

for each NIIN. Both the CPIOM and DES in their current form are capable of handling a

large number of NIINs and PEI platforms, the only limitation being one of computing

resources. This is possible because the input variables of the CPIOM are the same as

 4

those of the DES. In addition, the current simplistic design of the DES does not require

additional production processes to be modeled. However, this is assuming all associated

data for each NIIN and PEI are available (i.e., the number of each NIIN for each PEI,

price of each NIIN, initial quantity of each NIIN, etc.).

Enhancing the fidelity of the production process being modeled within the DES

would require modeling multiple production lines, since each PEI platform would require

a separate production line. That level of detail is beyond the scope of this thesis, which

focuses on the most critical actions of disassembling and reassembling a PEI.

The core mission of MDMC is to produce PEIs in accordance with a designated

output schedule. In meetings with plant managers located in Barstow, California and

communication with MCLC leadership, it was determined that MDMC seeks to

maximize the demand required of the output schedule by reducing stock-out conditions.

There are many reasons why stock-outs may exist, which are discussed later within

Chapter II. For this reason, CPIOM is specifically designed to minimize stock-out

situations. The overall goal is maximizing production output.

2. Literature Review

The use of optimization modeling in conjunction with DES is a concept having

several instances of literature studying its various implementations [6]-[11]. This concept

is referred to as Simulation Optimization (SO) and is applied in a wide variety of

industries, especially within the supply and logistics domain. In 2001, thesis research

conducted at Naval Postgraduate School used SO to improve Marine Corps combat

service and support element operations [7]. That thesis used optimization to determine

the best use of resources to deliver supplies in a constrained time space environment. The

results of the optimization are used as input variables within a DES. However, the idea of

using an SO technique in a dynamic combat environment is most likely impractical,

which is not the case in established supply chain networks.

In the area of supply chain network analysis, several studies exploring SO techniques

are available. In 2006, researchers from the University of Vienna’s School of Business

developed an SO framework in support of supply chain networks [6]. From Figure 1, one can

 5

discern that the idea in this research is to embed a simple optimization model within the

framework of a complex DES. The optimization model improves the DES overall

performance by adapting decision rules. After a few iterations, researchers found that they

gained convergence to good-quality solutions within much less computational time than

traditional optimization approaches [6]. Researchers from the University of St. Thomas

created a four-step methodology for SO development of supply chain networks [8]. Figure 2

provides the basic outline of the methodology. This is essentially the same approach taken

when developing the OMT (i.e., CPIOM developed first, DES developed second, integration

of CPIOM and the DES third, and testing fourth). In 2008, research conducted at Arizona

State University specifically focused on how to integrate optimization and DES models [9].

This research was not used in developing the OMT. However, it does provide insight as to

how more complicated model integration can be achieved. For example, within a specific

DES run there may be a requirement to run multiple optimization models. Design of the SO

integration may not be a trivial task.

Figure 1. Interaction between DES and optimization model.

D-E is the same as DES.

Source: [6] C. Almeder, M. Preusser and R. F. Hatl, “Simlulation and Optimization of

Supply Chains: Alternative or Complementary Approaches?,” OR Spectrum, vol. 31,

no. 1, pp. 95–119, 2009.

 6

Figure 2. Four-step methodology for SO concept development.

Source: [8] S. Kumar and D. A. Nottestad, “Suppy Chain Analysis Methodology-

Leveraging Optimization and Simulation Software,” OR Insight, vol. 26, no. 2, pp. 87–

119, 2012.

Other SO examples in literature include work dealing with value network design

problems in the chemical industry [10]. The SO construct within this reference is seen in

Figure 3. We mentioned previously the need to use multiple optimization problems. The

figure demonstrates a possible example of this. The optimization model is dedicated to

only solving a series of smaller sub-problems. The model used in this instance includes a

series of loops. The scenario based outer loop provides the overall input variables for the

value network. The two inner loops involve the DES. The second loop being the overall

time period and the innermost loop being broken into smaller time periods. Within each

of these planning periods, linear programming and genetic algorithm based scheduling

produce a feasible product-equipment allocation and production plan [10]. A fourth

Monte-Carlo loop is applied with the overall time period in which customer demand

fluctuates. The final SO example we provide is shown in Figure 4. This model was also

 7

developed to support chemical supply chain networks [11]. It is similar to the model just

explained with the exception that the optimization occurs on the outer loop and exit

criteria is specifically outlined. The SO construct designed in this thesis takes into

account similar approaches of both models.

Figure 3. SO construct example one.

Source: [10] M. Schlegel, G. Brosig, A. Eckert, M. Jung, A. Polt, M. Sonnenschein and

C. Vogt, “Integration of Discrete-Event Simulation and Optimization for the Design of

Value Networks,” Computer Aided Chemical Engineering, vol. 21, pp. 1955–1960, 2006.

 8

Figure 4. SO construct example two.

Source: [11] F. D. Mele, G. Guillen, E. Antonio and L. Puigjaner, “A Simulation-Based

Optimization Framework for Parameter Optimization of Supply-Chain Networks,”

Industrial and Engineering Chemistry Research, vol. 45, no. 9, pp. 3133–3148, 2006.

Based on the research conducted, there is sufficient evidence to suggest SO

techniques are beneficial in solving supply chain network problems [7]–[11].

Correspondingly, demand is sufficient to support development of commercial supply

chain management simulation and optimization software solutions [12]–[14]. This

includes software made by Llamsoft, Capterra, and AnyLogic.

It should be noted that MDMC has been the subject of research aimed at

developing analytical tools to help improve plant operations. One such study conducted

in 2009 by Northrop Grumman used linear programming techniques for this purpose

[15]. The model developed within this study “calculates the ‘optimal’ depot-level

 9

maintenance capacity and the effect of changing the number of work positions, workload

priorities, workload requirements, and/or shifts on the optimal capacity” [15]. The overall

objective of the model is to minimize the difference between workload requirements and

available workload requirements and available workload given a set time period. While

the study addressed utilizing DES via commercial software applications (ARENA and

ExtendSim) to create a management tool, the idea was dismissed due to the additional

modeling requirements of a DES. In addition, adding a DES to the concept design did not

fall within the requirements Northrop Grumman was tasked to accomplish [15].

 10

THIS PAGE INTENTIONALLY LEFT BLANK

 11

II. METHODOLOGY

This chapter focuses on providing an explanation of what optimization modeling

and DES are. As will be discussed in more detail, optimization modeling provides a

mathematical prescription to the problem of maximizing or minimizing a function subject

to a set of constraints. However, it may not take into account or portray the detailed

nonlinear stochastic intricacies that exist within the modeled system. Because of this, it

can be useful to utilize simulation in order to “play out” the results provided by an

optimization model. It is also important to stress the important contribution optimization

provides to a simulation. The relationship between an optimization model and a DES is

discussed in this chapter.

A. OPTIMIZATION MODELING

For a basic understanding of how optimization problems are developed, it is

important to understand the element composition of such problems. The necessary

elements are input data, decisions variables, constraints, and the objective function. Over

the next few sections, the aforementioned elements are described with CPIOM provided as

a test case example.

1. Decisions

The decisions in an optimization model are commonly referred to as the variables

or more formally decision variables. These variables are essentially the unknowns that an

optimization model is trying to determine in order to achieve the most favorable objective

of the problem. Decision variables are often represented with mathematical symbols such

as 1 2, ,..., nX X X . A wide range of decisions can be represented by decision variables. In

the case of CPIOM, the primary key decision variables are how many items of each NIIN

type to stock. However, there are other control variables required in the model. These

variables are not required in the DES and therefore not discussed within this thesis.

12

2. Constraints

The constraints of an optimization problem are simply defined as the limitations

or bounds confining the model. Generally, constraint relationships are used by bounding

functions of decision variables to a certain value b as follows:

A less than or equal or equal to constraint: 1 2(, ,...,) bnf X X X 

A greater than or equal to constraint: 1 2(, ,...,) bnf X X X 

An equal to constraint: 1 2(, ,...,) bnf X X X 

As will be demonstrated through CPIOM, optimization problems will often contain many

constraints depending on the complexity of the problem [16]. In addition, other

constraints may require that some or all of the decision variables be restricted to take

integer values.

3. Objective

In an optimization problem, the objective function identifies some function of the

decision variables in which the objective function is either maximized (MAX) or

minimized (MIN). The general format of an objective function is as follows:

MAX (or MIN): 1 2(, ,...,)nf X X X

4. Optimization Model Format

An example of an optimization model is represented as follows:

MAX (or MIN): 0 1(x ,...,)nf x (2.1)

Subject to: 1 1 1(x ,...,) bnf x  (2.2)

1,..., 0nx x  (2.3)

The above representation reflects the objective function (Equation 2.1) that will be

maximized (or minimized). The variables are subject to constraints (Equations 2.2 and

2.3). Of course, other constraints can exist depending on problem complexity.

 13

5. CPIOM Explained

This section provides an abbreviated explanation of the CPIOM model [1]. A

detailed explanation is provided within Appendix A. When formulating an optimization

problem, it is important to gather and define the required input data for the model. This will

provide the user with a reference guide of all indices, index sets, and parameters used. From

[1], the input data for CPIOM are as follows:

i I critical parts, also known as NIINs

ik K index for probability levels for part i

v V vehicle types or PEIs

iv V vehicle type that has part i

V

vn number of vehicles type v

I

in number of parts i in each iv vehicle

in total number of parts i. Calculated as
i

V I

v i

v V

n n




b budget for safety stock level

SO

ic cost of each stockout of part i

SS

ic cost of each part i in safety stock (unused inventory)

0

iq initial stock of part i

0q one if the initial stock (
0q vector) counts against safety stock budget, and

zero otherwise

,ik ikd p demand for level k, and probability for that level, for item i:

The decision variables are as follows:

iQ quantity ordered for part i

 14

SO

ikZ ancillary variable for stock-out of part i

SS

ikZ ancillary variable for parts i in safety stock that apply to the calculation of

 budget being used

The decision variables iQ must be whole number positive integers. As a result, the

CPIOM is considered a mixed-integer problem. Now that the decision variables are

provided, the objective function and constraints are added. The overall formulation for

CPIOM is as follows:

 MIN:
SO SO

i

ik i ik

i I k K

p c Z
 

 (2.5)

 subject to:

Z

ik

SO ³ d
ik

- (q
i

0 + Q
i
) "i ÎI ,k ÎK

i (2.6)

SO 0 ,ik iZ i I k K   

 (2.7)

0SS 0 ,q

ik i i ik iZ q Q d i I k K     
 (2.8)

SS 0 ,ik iZ i I k K   

 (2.9)

SS SS

i

ik i ik

i I k K

p c Z b
 


 (2.10)

0 and integeriQ i I  

 (2.11)

For the purpose of this thesis, the goal of the objective function (Equation 2.5) is to

prescribe the order quantities in order to minimize expected stock-outs subject to the

constraints (Equations 2.6-2.11).

A basic description of each constraint is as follows: Equations 2.6 and 2.7

calculate the stock-outs for NIIN i at every demand level k given order quantity iQ .

Equations 2.8 and 2.9 calculate the safety-stock for NIIN i at every demand level k given

order quantity iQ . Equation 2.10 limits the expected safety stock by a budget of b.

A key point to make about optimization models is that they are capable of

accommodating elements of randomness. As seen within the CPIOM input variables,

there is one variable that involves probabilities. A key feature of CPIOM centers on this

variable for formulating the probability of a certain NIIN to result in a not more than a

 15

certain stock-out at varying levels. This iterative formulation over varying demand levels

results in the output data displayed in Figure 5. This reflects the probabilities of no more

than a certain level of stock-outs for a particular NIIN. For example, for NIIN ending in

1278, the probability of having no more than two stock-outs is 72.3 percent. While

CPIOM portrays the stochastic nature of a given problem, only one answer for a set of

given inputs is provided. A more detailed explanation of this formulation can be found in

Appendix A.

Figure 5. This sample output probability distribution for the CPIOM reflects the

chance a certain NIIN will have no more than a certain stock-out.

Source: [1] J. Salmeron, A. Buss, T. Curling and M. Kress, “Plant utilization at Marine

Corps Logistics Command,” Naval Postgraduate School, Monterey, 2014.

B. DISCRETE EVENT SIMULATION

The purpose of this section is to provide a general understanding of DES and how

it will be used in the context of this thesis. As the name implies, a DES is a simulation in

which interactions within a system occur as specific discrete events in time. Over the next

few sections a description of how an event is defined, when an event is executed, and

what occurs during event execution in the context of this thesis will be provided.

Specifically, this section will discuss the primary elements of a DES. These elements are

states, events, and scheduling relationships.

1. States

The primary goal of a DES is to model the changes that occurs within a system or

process for a certain attribute or combination of attributes over time [17]. Capturing this

change is the cornerstone function of a DES in regards to analyzing a process or system.

The attribute(s) being modeled are referred to as the state variable(s). The collection of

 16

all the state variables in the simulation is referred to as the state space. The overall

combined status of the state space at any given moment in time constitutes the

simulation’s state [17]. A simple way to think of this is to consider the simulations state

as the overall condition of the system at a certain point in time. It is critical to understand

and identify the state space of a system or process, because it provides the primary basis

in which the system is to be modeled. In developing a DES, the primary focus is on those

parts of the system that have an effect on the simulations state. The mechanics of how a

DES keeps track of a simulation’s state will be detailed in Chapter III.

2. Events

Every process consists of key actions that occur at certain points in time that change

the state of the overall system. These points in time are known as events [17]. When an

event occurs within a system, the action(s) taken within that event will affect the state of

the system. An event may reference information about objects, also known as entities,

which must be passed along within the simulation. Some common examples of entities

include customers, passengers, and vehicles. As alluded to previously, one of the key points

to understand when discussing DES is the method in which events occur through

simulation time. Unlike a time-stepped approach that produces interactions in regular

intervals or steps, simulated time in a DES moves according to the time of the next

scheduled event. These pending events are maintained chronologically as event notices in a

list known as a future event list [17]. As the simulation progresses, event notices are

removed from the future event list as their respective execution time is reached.

Correspondingly, new event notices are also added to the list according to the simulation

design. In some cases, event notices can even be canceled.

When an event is reached according to the future event list, the event triggers the

actions defined by that event. There are several actions a state will implement: Two

fundamental actions include inducting changes to state variables (also known as state

transitions) and establishing a scheduling relationship between events. Other important

actions include updating entity information and tracking statistical data.

 17

3. Scheduling Relationship and Time Advance

Establishing a scheduling relationship between events is the driving catalyst of

the simulation [17]. Every event that occurs is assigned some specific action affecting the

simulation state and often times scheduling another event. The point at which events are

no longer created represents the time at which the simulation will end. This can be best

explained using Figure 6. When the simulation begins, an initial event is scheduled and

the event notice is placed on the future event list. The simulation advances to the first

scheduled event referenced on the event list and removes that event notice from the list.

The referenced event will then execute the actions assigned to it. If one of the actions of

the event includes scheduling another event(s), they will be placed onto the future event

list as event notices. The simulation will then advance to the next scheduled event until

the exit criteria of the DES is achieved or the future event list is empty. The topic of exit

criteria will be discussed further in Chapter III. This approach to simulation is

computationally efficient as the program only needs to process events, as they are

required.

Figure 6. This graph depicts the algorithm within a DES of processing

events on an event list.

Source: [17] A. Buss, “Discrete event simulation modeling,” unpublished.

 18

4. Simulation Parameters

The simulation parameters of a DES are those variables that do not change during

the course of a replication of the simulation [17]. Simulation parameters are in many

cases synonymous with the constraints of an optimization model. For example, a system

will have certain number of employees available, workstations available, or total number

of vehicles entering the system. However, this is not always the case. There may be

scenarios where the DES model does not contain a constraint that exists within the

optimization model. For example, the number of available work bays is an important

parameter within the DES outlined in Chapter III and not found in the CPIOM. This

converse situation may also occur.

5. Event Graphs

Event graphs are an important modeling tool used in developing a DES. Using

event graphs allows the simulation developer to organize and visualize the process being

simulated. This is accomplished by essentially copying the laydown of the events as they

appear in the real world. As explained in [17], event graphs consist of nodes to represent

events and directed edges to represent scheduling relationships. Figure 7 is an example of

a simple event graph extracted from [17] for a multiple server queue. In this example the

nodes represent the events and the directed edges represent the scheduling relationships

between events. From Figure 7, there are a total four events: Run, Arrival, StartService,

and EndService. The expression beneath each event reflects the state transitions taken for

that event. From Figure 7, the state variables are Q , the number of customers in the

queue, and S, the total number of available servers. The Run event initializes Q to 0 and S

to the parameter k. The directed edge from the Run event to the Arrival event means that

the Run event schedules the Arrival event tA time units after the Run event. The self-

scheduling arc on the Arrival event means that it schedules another Arrival event t A time

units in the future. The sequence {tA} is considered a parameter of the model, and

represents the successive customer interarrival times. This sequence {tA} can either be a

pre-specified collection of numbers or generated by a probability distribution.. Each

occurrence of the Arrival event will therefore carries out three separate actions. First, it

 19

will increase the state variable value by one (the state transition). Second, it will schedule

another arrival event. Third, it will attempt to schedule the start service event. Along the

scheduling edge there is an annotation with a (S > 0) above it. This annotation means that

a certain condition must be met in order to schedule the respective event. The condition

(S > 0) means that a server must be available for the start service event to be scheduled.

Similarly, the condition (Q > 0) on the edge from EndService to StartService means that

at least one customer must be in the queue for a StartService event to be scheduled. In

summary, an event graph provides the structure for DES program implementation.

Figure 7. Event Graph for multiple server queue with citation

Source: [17] A. Buss, “Discrete event simulation modeling,” unpublished.

6. Entities

Entities can be interpreted as the objects that move through a process or system.

Examples of entities include job orders, customers, or vehicles. The use of entities is

convenient when the modeled process must know what attribute(s) the entity possesses.

For example, there may be several production lines modeled in which multiple vehicles

are produced. Each vehicle entity will have an attribute identifying what type of vehicle it

is. When the vehicle enters the system, the DES will use this attribute to determine what

production line to enter. A vehicle entity may include inventory attributes. An inventory

attribute will enable the DES to determine what parts each individual vehicle requires. In

order to leverage the full analytical capability of a DES, entities may also include

attributes involving time. This includes the creation time and the last time an entity

Run

{Q=0, S=k}

Arrival
Start

Service

End

Service

{Q = Q + 1}
{Q = Q – 1,

S = S - 1}

{S = S + 1}

(S > 0)

(Q > 0)

tS
tA

tA

 20

encounters significant events. The attributes used are dependent on organizational

objectives and complexity of the represented system. Entities will be discussed in more

detail within Chapter III.

C. JOINT OPTIMIZATION AND SIMULATION AND MODELING

An intrinsic link is developed when combining Optimization modeling and DES

to analyze a particular process. As discussed previously, optimization modeling will

allow a deterministic, best case scenario to be calculated. A DES on the other hand can

account for the internal stochastic interactions of a process otherwise not possible using

optimization modeling. If designed properly and assuming the probabilistic data used is

representative of the future, a simulation can accurately replicate the process being

analyzed. This section will discuss the important role optimization modeling and DES

play for each other. This includes a discussion on how the techniques facilitate model

verification. Lastly, this section will provide a case study using simulation to enhance the

CPIOM results.

1. Optimization and DES Intrinsic Link

By now, it should be recognized that an optimization model and DES naturally

complement each other. Specifically, an optimization model’s prescriptive and static

nature supplements the descriptive and dynamic nature of the DES and vice versa. Seeing

that the two techniques are mutually supporting of each other in order to achieve a

decision making objective, an intrinsic link between them should exist.

The first reason is that both techniques require identical inputs since they are

modeling the same process. The second reason is that the output of the optimization

model provides important input information to the DES and vice versa.

A DES only “replays” the process in accordance with the inputs it is provided.

Without some analytical approach such as a design of experiments or optimization

modeling, trying to determine a best-case scenario using DES alone is a severely

inefficient method. For example, assume there is a group of widgets needing to be

repaired that require four different NIINs, each having a different cost. For each NIIN, a

 21

quantity of n = 15 parts is required. In order to determine the cost of every combination

of the r = 4 NIINs using simulation, a total of 1,365 possible combinations would need to

be simulated:

!
1,365

!()!
n r

n
C

r n r
 

 (2.12)

While it may be possible to run an algorithm that simulates every possible combination,

this is certainly a poor use of computing resources when optimization modeling can

determine an optimal solution mathematically. Assuming the 1,365 simulations run a

total of 10,000 repetitions per simulation, the use of an optimization model would reduce

the number of simulation repetitions by 13,640,000. This is just a simple illustration of

why optimization modeling is important when utilizing DES in the context of this thesis.

While optimization modeling is a very powerful tool, its deterministic nature is also a

potential limitation. As mentioned previously, an optimization model can take probabilistic

input data to produce a mathematical result such as represented in Figure 5. However,

optimization is not dynamic in nature and therefore limited in its ability to analyze the

internal stochastic intricacies of a process, which are naturally handled by a DES.

Every simulation repetition run potentially has a different outcome. This brings up a

third primary reason an intrinsic link exists: Without a DES, an optimization model would

essentially be unable to compensate for the stochastic and dynamic nature of the modeled

process. A DES allows an optimization model to account for this stochastic nature by

facilitating “course corrections” within the process as time progresses. This is

accomplished by allowing the optimization model to essentially take a snapshot of the

simulations state at prescribed times in order to re-optimize the process being simulated.

The specifics of how this is accomplished in regards to CPIOM is explained in Chapter III.

Lastly, an intrinsic link exists because a DES provides additional statistical

information other than the optimization models bottom-line results. Additional

information detailing the stochastic intricacies of a system not only facilitates the model

verification process but also the decision making process for which the optimization

model is designed. The next section demonstrates this concept of integrating simulation

and CPIOM.

 22

2. Monte Carlo Simulation with CPIOM

This section will briefly show how simulation can provide additional insights for

an optimization model. For this demonstration, the output data of CPIOM [1] is analyzed

using a Monte Carlo simulation technique. The use of a Monte Carlo simulation is a basic

process in which CPIOMs input data and the optimal order quantity output is used to

calculate total safety stock and total stock-out cost. For each calculation, the demand is

generated from the parts distribution probability input file. As a result, each calculation

will be different. In this example, the simulation is run a total of one million replications

using the optimal order quantity data provided by CPIOM for the baseline scenario listed

in [1]. The results provided by this simple demonstration reflect how simulation can not

only support the model verification process, but also provide additional statistical insight.

a. Model Cross Verification

Cross verification between a simulation and optimization model allows the

program developer to ensure the program is in fact working as intended. Verification is

an important step in the model validation process as it ensures the technical details are

being met. Perhaps one of the most difficult tasks when developing a model is being able

to validate that the model is accurately representing the real-world system. This

validation cannot happen unless we know that the model is first verified to be accurate.

The utility of using simulation and optimization to support this cross verification process

is seen when looking at the baseline scenario output data from [1]. The CPIOM’s output

data for the baseline scenario is seen in Figure 8 [1]. The optimization output provided is

the bottom line result of the optimization model. That is the total expected stock-out cost

of $10.18 and total safety stock cost of $29,983.41. As seen in Figures 9 and 10, the

Monte Carlo simulation output data for the baseline scenario yields very similar metrics.

Over a million repetitions, the simulation reflects a mean total stock-out cost of $10.19

and a mean total safety stock cost of $29,967.92. The closely matched metrics provide

cross verification between both the simulation and the optimization model. By ensuring

the simulation and optimization are functioning as programmed, future iterations of either

model can be developed with greater degree of confidence.

 23

Figure 8. CPIOM output results for the baseline scenario.

Source: [1] J. Salmeron, A. Buss, T. Curling and M. Kress, “Plant utilization at Marine

Corps Logistics Command,” Naval Postgraduate School, Monterey, 2014.

Figure 9. From [1], Monte Carlo simulation output for total stock-out

cost for the baseline scenario.

Source: [1] J. Salmeron, A. Buss, T. Curling and M. Kress, “Plant Utilization at Marine

Corps Logistics Command,” Naval Postgraduate School, Monterey, 2014.

24

Figure 10. Monte Carlo simulation output for total safety stock cost

for the baseline scenario.

Source: [1] J. Salmeron, A. Buss, T. Curling and M. Kress, “Plant utilization at Marine

Corps Logistics Command,” Naval Postgraduate School, Monterey, 2014.

b. Improved Statistical Analysis

Because the simulation is able to provide dynamic run-by-run analysis not

possible with a static optimization model, additional statistical analysis can be achieved.

As seen in Figures 9 and 10, the multiple runs allows for the data to be used in a

histogram according to total stock-out cost and total safety stock cost. This visual

representation may facilitate statistical analysis thereby leading to improved decision

making otherwise not possible using an optimization model alone. When looking at the

statistical data resulting from the Monte Carlo simulation, a couple of useful pieces of

information can be deduced. Notice from Figure 9 that 20.2 percent of replications will

result in no stock-out cost and about 30 percent will result in none or very little stock-out

25

cost. In other words, over 70 percent of replications reflect a stock-out cost using the

“optimal” CPIOM output data. When looking at the total safety stock cost metric in

Figure 10, the simulation reflects 47.8 percent of replications exceeding the prescribed

budget. In the operational environment, exceeding the budget is often unacceptable. Both

of these cases demonstrate how simulation will allow managers to more readily answer

questions concerning risk and ultimately shape their decisions. It is noted that

optimization models are not without useful statistical information. For example, an

extended version of CPIOM reflects the chance constraints by individual NIIN. As

discussed earlier, Figure 1 provides the likelihood for a particular NIIN to have no more

than a certain number of stock-outs. In conclusion, this co-optimization modeling and

simulation building approaches work complementarily to each other thereby allowing for

improved statistical analysis.

26

THIS PAGE INTENTIONALLY LEFT BLANK

 27

III. IMPLEMENTATION

One of the primary objectives of this thesis is to design, develop, and implement a

program that establishes the initial framework for a more robust Order Management Tool

(OMT). The OMT references the overall program discussed in the remaining chapters. As

an initial construct and proof of concept, the underlying DES model within OMT is set up

to accommodate the minimal key events of an MDMC production line. Future iterations

of OMT can be expanded, tested, and evaluated in accordance with the live environment.

The foundational implementation objective is to design OMT in a manner that

allows seamless integration of the DES and CPIOM. In order to allow for MDMC to

easily experiment with and validate the program, input data was in the form of Excel

spreadsheets, which are currently used and easily understood by MDMC personnel.

The secondary objectives include providing the user with output data in a

graphical format and using open-source solutions. The graphical output component of the

program will allow the user to quickly visualize important statistical data. In regards to

open-source solutions, this provides MDMC with uninhibited access to the program

resulting in increased flexibility in program development without the burden of

contracted support.

This chapter will discuss in detail how these requirements were implemented.

This includes introducing the tools used as well as potential alternative tools. The joint

DES and optimization construct will then be explained in order to provide the

overarching implementation concept of the system. With an understanding of the joint

construct, the DES model will be explained in detail. Finally, this section will walk

through aspects of the computer code in order to provide an understanding of program

implementation from a computer programming perspective. As mentioned earlier,

implementation of CPIOM is not the focus of this thesis. CPIOM will only be discussed

as it pertains to OMT programming implementation.

 28

A. DEVELOPMENT TOOLS

In this section, the various resources used for OMT development are explained.

The DES portion of OMT uses open-source resources obtained via the World Wide Web.

By utilizing these open-source resources, this allows for MDMC and LOGCOM to have

full access and control to the programming code. The only limitation that may exist is the

ability to install the General Algebraic Modeling System (GAMS) onto government-

owned computers [18].

1. GAMS and Cplex

GAMS is a commercial off-the-shelf program specifically designed for modeling

linear, nonlinear, and mixed-integer optimization problems. The program is especially

useful when dealing with large complex problems containing many variables and

constraints. The features of GAMS allow the user to focus on modeling rather than the

technical machine-specific problems.

GAMS/Cplex (www.gams.com/dd/docs/solver/cplex/) is a solver that allows

users to combine the high level modeling capabilities of GAMS with the power of Cplex

optimizer [19]. This is designed to solve large-scale optimization problems employing

state-of-the-art solution algorithms designed for linear and mixed-integer programming.

Because GAMS is used to implement CPIOM, the computer program developed in this

thesis currently interfaces with GAMS as opposed to other alternatives. It is important to

note that comparing between GAMS/Cplex with the open-source solver LPSolve

(described next) showed GAMS/Cplex to be a substantially faster solution engine.71

2. LPSolve

LPSolve (http://sourceforge.net/projects/lpsolve/) is one of many open-source

optimization solvers [20]–[22]. This solver is based on the revised simplex method and

the branch-and-bound method for integer problems. LPSolve is being mentioned in this

thesis to show that CPIOM can be implemented using only open-source solutions. The

limitation is that LPSolve may not necessarily achieve the result as effectively as

 29

GAMS/Cplex, which is used by the current OMT construct. This is most likely due to the

robust capabilities of their proprietary counterparts.

3. Java Based Tools

OMT development uses four open-source Java based resources. The first resource

is the integrated developer environment known as NetBeans [23]. This fully featured

program enables software developers to develop Java desktop, mobile, and web

applications. The second resource is an open-source library developed by Naval

Postgraduate School called SimKit [5]. This library enables development of robust DES

programs. The third resource is derived from the Apache POI project found at [3]. The

project’s mission is to create and maintain Java Application Programming Interfaces for

manipulating various file formats based upon the Office Open XML standards and

Microsoft’s OLE 2 Compound Document format (OLE2). In short, a program can read

and write Microsoft Excel files using Java. In addition, it can be utilized to read and write

Microsoft Word and Microsoft PowerPoint files. The fourth resource is the Java

JFreeChart library derived from [4], which is used to create the output charts for OMT.

B. JOINT OPTIMIZATION AND DES CONSTRUCT

This section explains how the optimization model and the DES interfaced. The

explanation of this interface includes the specific details of how the order management

process is integrated with the production process over time. In addition, a brief

explanation of how the simulation terminates, followed by a basic example of the joint

optimization and DES concept.

1. Implementation Overview

Implementation of the joint optimization and DES construct is a straightforward

concept in which CPIOM and the DES rely on each other for critical input information as

time progresses. Both the production process and the supply system are dynamic systems

that are often unpredictable. Unpredictable changes result in plans and outcomes being

altered. This joint concept will allow for the situation to be reassessed at designated times

in order to accommodate these changes. It should be made clear that the DES is

30

stochastic based on historical parts ordering and vehicle condition data. When running

the OMT, it is assumed that the historical data used are representative of the future

behavior of the supply system and vehicle condition. If this is indeed the case, this joint

concept will be effective in making the small adjustments required to achieve the

objective of the OMT.

The CPIOM and DES are dependent on two primary inputs. The first inputs are

the initial parts inventory levels. With the exception of the initial optimization run, the

critical information provided by the DES and required by the CPIOM is the current parts

inventory levels. The current parts inventory levels maintained by the DES serve as the

initial parts inventory levels at the moment the optimization model is run. The unknowns

to the DES are the parts order quantities. This critical information is provided by CPIOM

and required by the DES. As discussed in the previous chapter, the order quantities for

each part are the decision variables of the optimization model. Once CPIOM is run, the

DES will use CPIOM’s decision variable outputs as input variables. This iterative process

of the CPIOM feeding critical information into the DES and the DES feeding critical

information into the CPIOM will repeat as defined by the user.

2. Termination Criterion

As illustrated in Figure 11, a complete cycle of the simulation may consist of one

or many iterative loops within the OMT construct before meeting the exit criteria. The

number of loops made and total time this cycle lasts is based on the optimization

frequency and total simulation time as dictated by the user. Once the exit criterion is

achieved, the loop will end and the cycle will repeat itself until the required overall

criteria has been achieved for the simulation. For example, a user may dictate for the

cycle to consist of one optimization per yearly quarter for a period of one full year. In

other words, the loop will occur four times and exit directly from the DES on the last

loop.

31

Figure 11. An example of the OMT joint construct. CPIOM is applied

throughout the DES as dictated by the user.

As alluded earlier, the OMT joint construct cycle repeats until achieving the

required simulation repetitions. There are a couple of methodologies in defining the

overall termination criteria. The more formal way is based on convergence to some

steady state using statistical methods for a specific state variable. For example, at the end

of every complete cycle of the joint model, the DES could record the production

completion rate. A possible convergence metric may be looking at the residual value

based on the production completion rates. At the end of each joint model cycle, the

residual would be recalculated and the absolute values for the difference between the

newly recalculated residual value and the old residual value calculated. If there is a

difference, a counter will reset itself. If not, the counter will increase. Once the counter

reaches a certain threshold, the simulation will end. Essentially what is happening is that

the residual is stabilizing (meaning that there is not enough variation to warrant further

iterations). This value will fluctuate and eventually stabilize as the number of simulation

samples increases. In other words, the simulation will converge to a certain residual

value. There are several approaches that can be found in literature discussing the topic of

determining the number of simulation runs to be made [24], [25]. The simpler and non-

scientific approach would be to simply set a very high number of simulation repetitions

as the exit criteria. This is ideal if the computing speed and available memory permit, and

is the approach used in this thesis.

32

3. Concept Example

Figure 11 provides a simple example of the overall OMT construct process. In

this example, the optimization frequency is set to a rate of one optimization per yearly

quarter. The total simulation time is one full year. This means that CPIOM is run a total

of four times in the course of a single replication. When the DES reaches the one year

mark, the OMT program will exit the DES. This completes the first simulation

replication. The OMT will compile the statistical data from the DES and determine if the

exit criterion (required quantity of simulation runs) is achieved. If so, the OMT will exit

out of the overall simulation and take appropriate actions prior to closing. Otherwise, the

OMT will repeat the process.

Walking through Figure 11, when the OMT is initiated there is a gap between

when the DES begins and when the optimization model is run. During this time, the

OMT will extract data from the user-provided Excel spreadsheet and compile these data

for use by both the CPIOM and the DES. Once this process is complete, the CPIOM will

run. This first run of the CPIOM within the joint model construct is unique because the

initial inventory was provided by the user. Once CPIOM completes its initial run, the

DES will begin and the simulation time clock starts. From the onset of the simulation

starting, the DES will initialize itself by extracting data from not only the previously

compiled user-provided data but also from output provided by the initial CPIOM run. In

addition, the DES will schedule the first optimize event a quarter in advance. The DES

will then progress through the event list. Upon reaching the beginning of the second

quarter, the second optimization will occur. This run and all subsequent runs of CPIOM

will now use the current parts inventory maintained by the DES as its initial inventory

input. The CPIOM is run and another CPIOM run is scheduled a quarter in the future.

Again, the DES takes the output from the CPIOM and initiates the appropriate follow-on

actions required as result of the optimization event. The CPIOM will repeat itself two

more times as the DES progresses through time. Upon reaching the end of the simulated

year, the DES will then exit the joint model construct. At this point, the program will

compile the statistical data as well as determine if the joint model construct should be

repeated. If the exit criteria or number of simulation repetitions has not been achieved,

33

the process just described will be repeated. Of note, the extraction and compilation of

user data only occurs once. The CPIOM can immediately run with the originally

compiled data. If exit criteria is achieved, the OMT will not repeat the process and take

all pre-closing actions before terminating.

C. OMT PROGRAM AND DES MODEL EXPLAINED

With the joint optimization and DES construct explained, we set the stage for

explaining the fine details of how the DES is implemented. This section begins by providing

a general overview of the scenario in order to gain an understanding of the simulated model.

This will lead into a detailed discussion of each component and subcomponent within the

DES, (i.e., the individual events, states, parameters, entities, and scheduling relationships).

This discussion of DES components and subcomponents culminates by walking through the

model being simulated using the event graph for this DES.

1. Model Scenario

The model in which this program is based is formulated upon a basic production

scenario where PEIs of a single type enter into a production plant in order to be

completely dissembled and then reassembled from a parts requirement perspective. The

condition of each PEI is unknown upon entry. Once the PEI has been completely

dissembled, a determination as to the condition of the PEI from a parts perspective is

made. The PEI is then reassembled with serviceable parts. This completes the production

process. Obviously, new parts will be required in order to replace the unserviceable parts.

Without knowing the condition of the vehicles ahead of time, plant managers must

somehow estimate what parts will be required in order to preorder the parts and avoid a

stock-out situation. The plant also does not want to exhaust its budget ordering parts that

will not be needed i.e., having safety stock. Large amounts of the budget tied up in safety

stock could inhibit purchasing parts in a stock-out situation. The combined effect of parts

existing in a stock-out and safety stock status could result in the production line being

impeded and thereby reducing production plant capacity. Of course, there may be other

reasons why MDMC managers are seeking ways to improve parts management.

 34

The fundamental goal of this basic scenario is to allow a fully functional program

to be developed. This will allow future developers to focus solely on validating the

existing model as well as expanding the scenario. This includes, but is certainly not

limited to, adding multiple PEI types, increasing individual production line fidelity,

adding additional model constraints, and adding multifunctional production line

capability for a specific PEI.

2. OMT Program Requirements

With the base scenario and joint optimization construct in mind, attention can be

focused on determining the functional requirements of the OMT program. In addition, the

primary and secondary objectives mentioned earlier in this chapter are also converted into

functional requirements of the DES program. Functional specifications require that the

OMT be capable of

1. extracting user input from Excel spreadsheets.

2. creating csv input files for use by CPIOM.

3. seamlessly interfacing the DES with CPIOM.

4. creating individual PEIs of a single type.

5. determining individual PEI condition using historical data from a parts

perspective.

6. determining an individual part’s lead time using historical ordering data.

7. maintaining an inventory of parts.

8. calculating, ordering and receiving parts.

9. maintaining simulation state statistics

10. producing graphical representation of state statistics (secondary

requirement)

11. using open-source tools to the maximum extent possible (secondary

requirement)

In developing the OMT, each requirement is independently tested and developed as its

own separate Java class to the maximum extent possible. This approach helps in breaking

 35

the program into smaller, more workable pieces, which ultimately helps when debugging

or updating certain aspects of the program.

3. DES Entities

The entities within this DES are the individual PEIs. Because the PEI class

extends SimKit’s Entity class, each PEI contains all of the functions and attributes

associated with the Entity class. This includes the inventory, identifier, creation time, and

time stamp. The PEI class in particular assigns additional attributes to include the PEIs

internal inventory, time to assemble, and time to disassemble. The assembly and

disassembly time are only temporary attributes. A more appropriate method in assigning

these times would be to reference an index. This is especially true if the production line

fidelity is increased. One production line could consist of hundreds steps resulting in a

complex index of production times. As the PEI moves through the production line, the

PEIs internal inventory would be adjusted as appropriate. The DES’s ability of knowing

what parts a PEI has and being able to remove and add parts from it is the cornerstone

function of the DES.

4. DES Parameters

As mentioned earlier, the parameters are all of the input variables that do not

change within the DES. This includes the following:

 Cost of each part per NIIN

 Parts required for each PEI type

 Total number of bays

 Re-optimization time

 Total number of PEIs entering system per optimization period

 Total simulation time

Some of these parameters must be placed into an array for easy reference by the program.

For example, the parts required for each PEI type could potentially consist of thousands

of NIINs with varying quantities for dozens of PEI types. Consolidating this information

into an array will facilitate quick access as to what a PEI requires. Having access to this

 36

array via an index will facilitate efficient creation of each PEI. As model complexity

increases, especially in regards to model constraints, so will the number of parameters.

5. DES State Space and Statistical Information

Derivation of important statistical information comes from the state variables that

comprise the state space. The state space analyzed for this DES focuses on aspects of the

parts inventory and how the PEIs move through the production process. Because each

state variable is dynamic, we can derive statistical information about the system itself

from the state trajectories produced by the simulation. This section explains the purpose

of each state variable and important statistical information derived from it. In addition,

the model can be adjusted to capture additional desired statistical data.

a. Arrival Queue Delay

The arrival queue delay state variable reflects how long PEIs are waiting before

being disassembled. The time of delay is determined using the PEIs internal time clock.

With this information the average delay time for PEIs awaiting disassembly can be

derived. In the context of this thesis, this will indicate a deficiency in regards to available

workspaces. If stock-out situations are severe enough to prevent PEI production goals

from being met, new PEIs entering the system risk the chance of not having a workspace

available. This metric can potentially provide planners with information to support

increasing logistical capabilities if there is truly a high likelihood of increased stock-out

situations. As a result, proactive decisions can be made in order to allow the production

process to continue in regards to plant disassembly operations.

b. Arrival Queue

The arrival queue state variable maintains each PEI into the system in the actual

order they arrive into the system. This state variable allows the program to determine the

average number of PEIs in the arrival queue throughout the simulation. Having an idea of

how many PEIs are not being accommodated provides additional insight to the problem.

Some delay in the queue may be perfectly acceptable. However, a large number of PEIs

being delayed even a short time may not be acceptable. This metric is particularly useful

 37

for planners when trying to determine exactly how plant operations should be modified in

regards to either the acceptance of new PEIs or increasing logistical capabilities.

c. Assembly Queue Delay

The assembly queue delay state variable reflects how long PEIs are waiting before

being reassembled. Again, the time of delay is determined using the PEIs internal time

clock. As with the disassembly queue delay, the average delay time for PEIs awaiting

assembly can be derived. In the context of this thesis, the only reason a PEI would not be

assembled is if any of the required parts is not available (i.e., is in a stock-out status). The

primary objective of CPIOM is to avoid the situation of PEIs not being produced due to

stock-out situations. While it may not be realistic to say that all parts must be available in

order to reassemble a PEI, it would certainly be conducive to the production process if

this were the case.

d. Assembly Queue

Like the arrival queue, the assembly queue state variable maintains each PEI

arriving into the assembly queue in the actual order they arrive. This allows the DES to

determine the average number of PEIs in the assembly queue. This metric provides added

insight as to the impact of stock-outs.

e. PEI Time in System

The PEI time in system state variable simply reflects the time it takes for each PEI

to move through the entire production process, i.e., from arrival to completion. This

allows the DES to determine the average time it takes for a PEI to be produced. While

perhaps not as important a measure as the percentage of PEIs produced, this statistical

measurement is a good measure of performance as to how efficiently PEIs are being

produced. Comparing this metric to the overall time it takes to produce a PEI with no

delays can provide useful information as to how adjustments to the system can be either

detrimental or conducive to the process.

 38

f. PEIs Completed

The PEIs completed state variable reflects the PEIs in a completed status. Once a

PEI is reassembled it is placed into list of completed PEIs. The sole purpose of this state

variable is for determining the percentage of PEIs completed at the end of the DES. This

metric is considered the most important one of the system. The goal is to ultimately

produce all of the PEIs by the end of the DES.

g. Total PEIs Entering System

The total PEIs entering system state variable reflects the number of PEIs entering

into the system. The only purpose of this state variable in the context of this thesis is for

calculating the percentage of production completed at the end of a simulation run as

explained in the PEIs completed section. However, there are several other statistical

calculations that may utilize this state variable.

h. Number of Available Bays

As the name implies, this state variable reflects the number of bays available at

any given moment in simulation time. The number of available bays state variable also

serves as the basis for determining if a PEI can be disassembled or not. The primary

statistical measurement derived from this state variable is the average number of

available bays available. Using this statistic, the average bay utilization can be calculated.

This can be useful in determining how well production line resources are being utilized.

A low utilization rate would indicate that the system resources are not being maximized.

On the other hand, very high utilizations can result in unacceptably large delays. While

this measure falls out of the scope of this thesis, further studies may reveal many

interactions within the modeled process.

i. Parts Inventory

This state variable reflects the total inventory of the production process. This is

the most dynamic state variable because it can potentially consist of thousands of parts

and changes throughout the production process. Statistical measures can be derived at

both the holistic inventory level or at the individual part level. The primary statistics

39

derived from this variable is the average stock level quantities. This statistic will allow

for other useful statistics to be determined such as overall total average safety stock cost

and percentage of stock out that exists. The OMT in its current form does not allow for a

determination of time the inventory or component thereof remains in a particular stock

status i.e., stock out or safety stock status.

j. Part Order Quantity

The part order quantity state variable reflects the quantity of each part that needs

to be reordered. As discussed above, the part order quantity is the decision variable

output of CPIOM and will change each time CPIOM is run. The current program does

not utilize this state variable for the purpose of statistical inference.

k. Deficient Parts Quantity

The deficient parts quantity state variable reflects the quantity of each part of a

PEI that is unserviceable. As with the part order quantity state variable, this variable is

not utilized for the purpose of statistical inference.

6. DES Event Graph

This section will briefly describe the event graphs associated with the DES.

Detailed explanation of the event graphs is provided in subsequent sections. There are

two event graphs used to outline our DES. Figure 12 reflects the event graph for the PEI

arrival process and Figure 13 reflects the event graph for the PEI production process. The

goal of the event graph is to represent the entire programming construct of the DES.

Often, small elements of pseudo code exist within the event graph to represent the

specific actions taken by a particular event. For the sake of visual clarity, only a few

conditionals and variables are outlined in Figure 12 and Figure 13. The event graph can

essentially be viewed as the DES’s blueprint.

40

Figure 12. The PEI arrival process event graph programmatically outlines the

process of generating a PEI entity.

41

Figure 13. The PEI production process event graph programmatically outlines the

production process for a PEI entity.

Notice that in both event graphs there are a series of lines leading from one

process to the other. This means the two processes are “listening” to each other. Because

some of the event list logic, the sequence of scheduled events do not necessarily

correspond chronologically. In order to facilitate interpretation of the event graph, all

state variables and parameters used within the event graphs are referenced in Tables 1

and 2. Table 1 provides a reference for all parameters and Table 2 provides a reference of

all state variables. We will then discuss in detail each event associated with the event

graph.

42

Table 1. List of parameters for the arrival process and production process

event graphs.

Parameter Type Initial Value Abbreviation

totalNumberBays Int User defined K

NIINLeadTime Double varies
leadt

PEIDisassemblyTime Double varies
dist

PEIAssemblyTime Double varies
assemt

reoptimizeTime Double User defined
optt

arrivalTime Double User Defined
arrivalt

qtyPEIPerOptimize Int User defined R

Table 2. List of state variables for the arrival process and production

process event graphs.

State Variable Type Initial Value Abbreviation

PEIComplete ArrayList<PEI> Clear C

numberAvailableBays Int K B

totalNumberAvailableBays Int 0 T

arrivalQueue PriorityQueue<PEI> Empty arq

assemblyQueue PriorityQueue<PEI> Empty Asq

totalDelayInArrivalQueue Double NaN DR

totalDelayInAssemblyQueue Double NaN DS

delayInArrivalQueue Double NaN Tdr

delayInAssemblyQueue Double NaN Tds

totalTimeInSystem Double NaN TS

timeInSystem Double NaN Pts

inventory Map<String,Integer> original inventory I

numberOfArrivals Int 0 N

qtyPEIRemainingCreation Int qtyPEIPerOPtimize D

fromOptimize Boolean False O

peiServiced Int 0 Sp

enterStartDisassemblyTally Int 0 DT

partsArrived Boolean False PA

7. PEI Arrival Process Event Graph

The PEI arrival process component within the DES is responsible for creating

entities (i.e., creating new PEIs). We will explain in detail this component as outlined in

Figure 12. This explanation is broken up by individual events. Reference Tables 1 and 2

43

for further clarification of variables used within the event graph. For visual clarity, Figure

12 is a generalized representation.

Programmatically speaking, the PEI arrival process is built on a simpler arrival

process by creating a subclass of the Arrival Process. Instead of creating a new method or

complicating an existing method, we add onto existing code without altering the original

method. When a method of the same name is in the subclass, it is termed “extending” the

method. Additionally, a subclass often adds methods and variables. In this case, the PEI

arrival process “extends” the arrival process. This means the PEI arrival process will take

on the functionality of the basic arrival process and add additional functionality.

a. Run Event

As its name implies, the run event is the first event that occurs within the DES.

This event is executed once per simulation iteration and carries out the initial actions of

the DES through via the reset() and doRun() methods [17]. The reset() method resets all

applicable state variables to the starting state value. The state variables that apply to the

PEI arrival process event include the number of arrivals, number of PEI arrivals

remaining, and the from optimization variable. These variables are set according to Table

2. The doRun() method ensures variables needing to be tracked for statistical purposes

are established. In this case, the numberOfArrivals variable is required for statistical

tracking. At this point, the Arrival Event is immediately scheduled. Information is passed

along when scheduling a new event to include the next scheduling time and relevant

additional information. Additional information may include entities and variables. The

information passed for the Arrival Event include the fromOptimization variable and the

interarrivalTimeGenerator variable. The fromOptimization variable is not necessary in

the simulations current state. However, it may be necessary if there are unique actions

occurring on initial execution. The interarrivalTimeGenerator variable allows the

simulation to randomly assign a time and can modified as the user sees fit.

b. Arrival Event

The Arrival event executes once the randomly assigned schedule time has been

reached. The first action taken by this event is to keep track of the total number of PEIs

 44

entering the system. Each time a new PEI enters the system, the numberArrivals variable

is increased by one for statistical purposes. At this point the simulation immediately

moves onto the PEI creation event. Currently, the Arrival event schedules the next event

for newly arriving PEIs in mass. The assumption is that the PEIs are staged and ready for

processing.

c. PEI Creation Event

The primary purpose of this event is to facilitate PEI creation and update the

master inventory. As mentioned earlier, this event is an extension of the arrival event.

Because of this, the event is technically not an additional event but part of the arrival

event. In fact, the first action of this class is to call the arrival event. However, we are

treating it as a separate event rather than lumping it into the previously explained

“Arrival” event for conceptualization purposes. Once the Arrival event completes its

tasks, this event will instantiate a new PEI. We initially assume all parts are serviceable.

As a result, the required parts for that PEI is added to the main inventory and the PEI

itself. A determination of what parts are unserviceable will occur after the vehicle is

disassembled. At this point, this event will immediately schedule the PEI arrival event

passing along the PEI itself and numberArrivals variable. The final step is to reduce the

numberArrivalsRemaining variable by one. This process will repeat itself until there are

no further arrivals remaining. Only one PEI type will enter the system and all PEIs are

scheduled to arrive at the same time with no variability in the number of arrivals.

However, the PEI arrival process can be programmed to generate PEIs either

deterministically or randomly for the both the quantity of PEIs and arrival frequency.

How the PEIs will arrive is ultimately up to the user. For example, the user may choose

48 AAVs and 12 howitzers to arrive at the same time and an unlimited number of trucks

to arrive randomly, depending on the scenario being modeled.

d. PEI Arrival Event

In relation to the PEI arrival process, no actions occur within this event. Because

the PEI arrival process is independent, the production process must be paying attention to

the PEIs that are arriving. Each time a PEI arrives, the PEI production process is listening

45

for the PEI arrival event. Within the SimKit programming construct, this is known as an

“event listener.” Notice in Figure 12 and Figure 13 that there are a series of connector

bars leading to a process. This means that each process is listening to each other.

8. PEI Production Process Event Graph

The DES PEI production process component is responsible for replicating the

actual production process a PEI must go through. This process is outlined in Figure 13.

As before, an explanation is broken into individual events. Reference Tables 1 and 2 for

further clarification of variables used within the event graph. For visual clarity, Figure 13

is a generalized representation.

a. Run Event

This event follows the same methodology as explained for the PEI arrival process

run event. The reset method sets all remaining state variables according to Table 2.

Second, all csv files are instantiated for use by CPIOM. Third, the initial optimization

occurs. Lastly, the main inventory is updated with the current safety-stock. Statistical

tracking for all applicable variables is established via the doRun() method. This includes

tracking changes in the assembly and arrival queues, number of available work bay,

changes in the inventory, number of PEIs serviced, and overall changes within the

system. The variables used vary widely depending on the objectives of your analysis.

This event will also schedule an optimize event as dictated by the user. In addition, the

compute orders event is scheduled with no delay.

b. PEI Arrival Event

The PEI Arrival event is “heard” from the PEIArrivalProcess and has five primary

actions. First, it will establish the time that the PEI arrives to the production process.

Second, every PEI will be placed in an arrival queue. In the case that the production line

is unable to accept the PEI, the arrival queue will allow the simulation to hold the PEI(s)

until the system can accommodate them. This event will also ensure any change in the

arrival queue is tracked for statistical purposes. Finally, the PEI arrival event will check

46

to see if there are enough bays available. If bays are available, the start disassembly event

is scheduled. Otherwise, the PEI will remain in the arrival queue.

c. Start Disassembly Event

The Start Disassembly event has a total of four functions. The first function is to

update the number of available bays as the result of a new PEI entering the production

line. Change in the number of available bays is tracked. The second function is to remove

the PEI from the arrival queue. The change occurring within the arrival queue is tracked.

Third, the event will determine how long the PEI is in the arrival queue in order to track

this statistic. Finally, the start disassembly will schedule the finish disassembly event to

occur some to be determined time in the future. This will include passing the PEI to the

next event.

d. Finish Disassembly Event

The Finish Disassembly event has many functions. Its primary function is to

adjust the main inventory for each completed PEI. This is a two-phase process. First, the

parts required for each PEI are added to the master parts inventory. Every PEI arrives

with zero parts so no action is required on the part of the individual PEI inventory.

Second, the condition of the PEI (i.e., unserviceable quantities of each NIIN) must be

determined. The main inventory will be adjusted accordingly. The change in the new

inventory is tracked. After the main inventory is adjusted, the PEI is added to the

assembly queue. Change to the assembly queue state variable is tracked. At this point, the

Finish Disassembly event will check to see if all parts are available as well as ensure PEIs

still exist in the queue. If both requirements are met, the start assembly event is scheduled

with no delay. Otherwise, the PEI will remain in the queue until the conditions are met.

e. Start Assembly Event

The Start Assembly event removes the PEI from the assembly queue and

determines the PEIs assembly queue delay time. Changes in the assembly queue and PEI

assembly queue delay time are tracked. The Start Assembly event then schedules the

Finish Assembly event to occur when the PEI is reassembled. Scheduling the Finish

47

Assembly event (see below) requires the PEI to be passed along by the Start assembly

event. It must then remove the parts required for the PEI to be reassembled. This will

ensure the main inventory does not fall into a negative balance in the case where multiple

PEIs are being processed at the same time. Finally, changes in the main inventory are

tracked for statistical purposes.

f. Finish Assembly Event

The Finish Assembly event has six state transitions. Because the simulation is

currently designed to add all parts at the same time, this event will restore the PEIs

internal inventory. The bay being used by the PEI is then released for another PEI to use

and the associated change to the bay is tracked. The total time the PEI has been in the

system is recorded. The event then schedules the PEI complete event, passing the PEI.

The event will then check to see if any PEIs are waiting in the arrival queue. If so, a Start

Disassembly event is immediately scheduled so that awaiting PEIs can be processed. One

issue that may arise for PEIs waiting to be processed in assembly queue is that there may

be a large influx of parts arriving thereby facilitating more than one PEI being processed

for assembly. In order to remedy this issue, the final action is to check and see if there are

enough parts to accommodate additional PEIs being assembled. If additional PEIs are

waiting in the assembly queue and sufficient parts are available, the Finish Assembly

event schedules an additional Finish Assembly event.

g. PEI Complete Event

The PEI Complete event simply out-processes the PEI from the production

process, and adds the PEI to the PEI completed list. This event can be modified for future

iterations of the model to accommodate additional post production actions.

h. Optimize Event

The Optimize event’s primary action is to run CPIOM using the current

inventory. In the context of this DES, the CPIOM must know the initial inventory. Prior

to the DES start, the initial inventory is designated by the user provided input. Once the

simulation begins the inventory is constantly in flux. As a result, the CPIOM must use the

48

current main inventory of the process at the time of the Optimize event as the new initial

inventory. It is important to clarify that the initial inventory is the safety stock that exists.

Recall each PEI is essentially stripped of its parts. These parts are then placed in the main

inventory. The safety stock is calculated by multiplying the total number of vehicles

currently in the production process (i.e., uncompleted vehicles) by the parts required for

each PEI and subtracting this from the main inventory. Any remaining parts reflect the

safety stock and therefore the initial inventory to be used by CPIOM. Once the CPIOM

has been run, the Optimize event will then schedule the next optimize event to occur

according to the re-optimize parameter. In addition, the Optimize event will schedule the

compute orders event and another arrival event.

i. Arrival Event

No actions occur in relation to the PEI production process. Recall that the PEI

arrival process is listening for this event. When this event is scheduled, the PEI arrival

process begins the process of bringing additional PEIs into the system.

j. Compute Orders Event

The primary purpose of the Compute Orders event is to ensure the accuracy of

orders. One of the issues that can occur within the simulation is that previous orders may

still be pending. Because the CPIOM does not consider pending orders, the compute

orders event will screen all pending orders in order to ensure the same parts are not being

double ordered. If there are instances in which the parts required to be ordered are

actually less than what is currently on order, the orders will not be cancelled. This is

assuming variations between the optimization model and the simulation will even out

over time. In cases where the parts required exceeds the total quantity on order, only the

difference between the quantity of parts on order and quantity of parts needing to be

ordered would be put on order. Another feature of the compute orders event is that it will

only process NIINs to be ordered if historical order data exists. In other words, the DES

cannot process an order unless it can determine a lead time for the NIIN being ordered.

Chapter IV will discuss the problem of having insufficient ordering data in more detail.

 49

For each NIIN that requires an order, an order parts event is scheduled in which the NIIN

and quantity to be ordered is passed along.

k. Order Parts Event

The Order Parts event simulates the actual “ordering” of parts. Critical to this

function is determining the lead time of each NIIN to be ordered. This is accomplished

through the use of historical order data and will be explained later on within this chapter.

Once the lead time is determined, the parts arrival event is scheduled according to the

assigned lead time. Again, the NIIN and quantity ordered is included when scheduling

the parts arrival event.

l. Parts Arrival Event

The Parts Arrival event processes the parts when they arrive, updating the main

inventory by adding the parts and tracking the change in inventory. The Parts Arrival

event will then immediately notify the production line that new parts have arrived by

scheduling a start assembly event.

D. PROGRAMMING IMPLEMENTATION

This section will provide a brief explanation of the various programming classes

used to execute the simulation as well as critical components of the code. In addition, the

source code will contain annotations throughout explaining in more detail the

methodology used. The source code can be obtained by contacting Modeling Virtual

Environments and Simulation (MOVES) at the Naval Postgraduate School.

1. Order Management Tool Data Entry

Data entry of required OMT input data is done via Microsoft Excel. For the

current version of this OMT, the Excel workbook consists of five worksheets. The first

sheet provides the NIINs being analyzed. For each NIIN, the 13 digit identification

number, required quantity for each PEI, and initial quantity on hand is provided. The

second sheet includes the condition history for a particular PEI. The sheet includes a

listing of each PEI serial number and a tally of unserviceable parts for each NIIN. The

 50

third worksheet provides the order history. This includes the original order date and the

arrival date for every NIIN ordered. The fourth worksheet provides the unit price of each

NIIN. The fifth worksheet allows the user define the OMT parameters. This includes the

safety-stock budget, number of PEIs entering the system, number of available work-bays,

simulation time, optimization frequency, steady state time, and number of simulation

runs. For the current OMT version, a new set of PEIs will enter the system each time an

optimization occurs.

2. Simulation Time

Simulation time is in working days. One working day represents eight hours.

While not important for the current system represented, the hours will be critical when

modeling the system in more detail. Because the simulation does not stop running, one

full quarter works out to be roughly sixty-six working days or 264 working days for a

year. This calculation takes into consideration weekends and holidays. The program

allows the user to input the simulation time for three primary variables namely total

simulation time, re-optimization time, and steady state time. The re-optimization time

establishes the frequency at which the simulation will run CPIOM. The steady state time

is the time in which the user wants the simulation to start compiling statistical

information. This allows the user to determine the steady state of the simulation, as

explained in Chapter IV.

3. Java Classes

In order to more easily construct and make future modifications to the program, it

is important to divide the program into classes. Classes are simply functional components

or building blocks of a program. This “piece-meal” approach allows increased flexibility

when developing future iterations of the program.

a. Input Data Processor Class

This class is responsible for processing all spreadsheet data for use by CPIOM

and the DES. The class accomplishes this by systematically assigning relevant data to a

series of reference databases called maps. The simulation references these maps for the

 51

duration of the simulation. Processing of the data must occur in a specific order. As a

result, modifications to the data entry spreadsheet will result in errors. For example, the

DES must reference the required parts first. Without knowing this basic information, the

DES will not be able to carry out future logic.

b. Comma Separated Value (.csv) File Creator Class

CPIOM requires certain input files to be in comma separated value (csv) format,

and this class is responsible for generating those files. There are eight .csv files required

of CPIOM. With exception of the NIN_data.csv file, all of these files generate once prior

to the simulation starting. The NIN_data.csv file must update information about the initial

quantities of new parts each time prior to the program re-optimizing. This class initiates

the required calculations for determining the initial-on hand inventory for each NIIN.

These calculations include projecting required parts for PEIs pending disassembly while

taking into account on hand new and used inventories as well as current parts orders. The

files that need to be produced initially include the following:

NIN.csv is a listing of all the NIINs being ordered.

NIN_chance.csv is currently not used.

NIN_data.csv this contains important info concerning safety stock cost.

NIN_histogram.csv contains distribution of unserviceable parts.

V.csv lists the vehicle type(s).

V_data.csv provides number of vehicles.

V_NIN.csv provides the required parts per NIIN and PEI type.

c. Inventory Management Class

As the name implies, this class keeps track of new and used parts inventories.

d. Optimizer Class

This class is the critical link between the DES and GAMS. The Optimizer Class

ensures all required directories exists and executes the GAMS program to run CPIOM.

 52

The GAMS program correspondingly outputs the resulting files into the proper directory

for later use by the DES.

e. Order Management Class

This class reads the recommended orders for each NIIN from the output file

generated by CPIOM. The DES correspondingly places this data into a map for future

use.

f. Lead-Time Calculator Class

This class works in conjunction with the data Input Data Processor Class. The

purpose is to produce a map of histograms for lead times of each NIIN. The Lead-Time

Selector Class explained next will use this map of histograms.

g. Lead-Time Selector Class

When ordering parts within the parts order event, the Lead-Time Selector Class

will determine what the lead-time is. Lead-time is determined by randomly selecting

from the data provided by each NIIN lead-time histogram.

h. PEI Class

The PEI Class defines the specific attributes of each individual entity entering the

system. The DES in its current state contains a map attribute composed of the parts

inventory. Simulation of a more detailed system model will require adding parts at

different times. Having an inventory attribute will allow the DES to keep track of specific

parts contained in an individual entity and thereby facilitating various events within the

disassembly and assembly phases. While not currently used, each PEI also has an

attribute reflecting how long it is sitting in a particular queue. Future iterations of the

DES may also include using different PEIs. This will require an entity identifier attribute.

Additional PEI variations within a single DES will inevitably result in creating additional

classes focused on those specific PEI types.

53

i. Arrival Process Class

The Arrival Process Class tracks the number of entities entering the system and

controls the flow and frequency of arriving entities.

j. PEI Arrival Process Class

PEI Arrival Process Class is an extension of the Arrival Process Class. This class

executes the logic of the PEI Arrival Process Event Graph Figure 12. As each entity

arrives to the system, this class will establish the attributes of each individual entity. The

entities for this DES are the individual PEIs as defined by the PEI Class. This class will

establish a PEIs individual parts inventory. A PEI arrives with all parts available whether

they are serviceable or not. As a result, The PEI Arrival Process Class will assign each

PEI a full inventory according to the user input.

k. PEI Production Process Class

This PEI Production Process Class contains the core logic of the DES. This class

executes the logic of the Production Process Event Graph Figure 13.

l. PEI Condition Selector Class

Each individual PEI will arrive to the system in a certain condition. The PEI

Condition Selector Class will determine the condition of each PEI. This occurs after the

disassembly process for each PEI.

m. NIIN Availability Check Class

The sole purpose of the NIIN Availability Check Class is to ensure that parts are

available in the master parts inventory. If a particular NIIN is not available, this class will

prevent the PEI from entering the assembly process.

n. Simkit Chart Factory Class

This class creates the various histogram charts resulting from the DES. This is

made possible using the open-source jfree library [4].

 54

o. Histogram Class

The Histogram Class generates the various histograms within the simulation using

the SimpleStatsTally class within SimKit’s statistical library. The histograms enable the

generation of the NIN_histogram.csv file and all output graphs.

p. Run PEI Production Process Class

This is the main class used to run the DES. The class initiates the required classes

enabling the DES to execute. This includes creating an InputDataProcessor variable and

ensuring only relevant data is available. Other variables instantiated include an

InventoryManagement, PartsConsumption, and LeadTimeSelector variable. In addition,

this class instantiates all required variables necessary for outputting statistical data into

visual form via histogram charts. Lastly, the RunPEIProductionProcess Class tracks and

initiates simulation repetitions.

4. OMT Statistical Tracking

SimKit allows for statistical information to be derived using built-in statistical

libraries. Two functions derived from these libraries and used within the OMT include the

simpleStatsTimeVarying and simpleStatsTally functions. The simpleStatsTimeVarying

function is used when time is a dependent variable, as is the case in determining utilization

rates. The simpleStatsTally function is used when time is not a dependent variable, as is the

case when determining production rates. The main role of these functions are to keep a tally

of each state transition as outlined in Chapter III. This is achieved using a SimKit method

designed to pass state variable information about a state transition into the respective

function. As a result, the functions keep a running tally of all state variables within the

simulation allowing for statistical analysis.

55

IV. TESTING AND ANALYSIS

This chapter discusses the analysis of MDMC-provided data, the process used to

verify the OMT, and finally demonstrates the basic OMT statistical utility. It will also

provide the methodology for program verification and key findings resulting from the

verification process. The demonstration portion of this chapter will provide a small

sampling of the DES program utility in regards to statistical output.

A. DATA ANALYSIS AND VALIDATION

An analysis of MDMC data was conducted prior to building the OMT program.

This analysis provided important insights because it helped to define how the program

processes the data. From this analysis came two key findings. First, individual NIINs

cannot be considered as independent variables. Second, the order history data provided

by MDMC proved to be statistically insignificant for the parts requiring analysis.

1. Unserviceable Parts Distribution

As mentioned earlier, a key finding found when researching the distribution of

unserviceable parts is that parts cannot be treated independently. Using historical data to

look at the distribution of unserviceable parts for six NIINs associated with the

Amphibious Assault Vehicle (AAV), it is determined that for certain parts a dependent

relationship exists [1]. For example, the probability of an AAV requiring NIIN

015421278 (torsion bar type 1 of 4) using a binomial distribution is 17.7 percent. As

shown in Figure 14, the probability distribution of this NIIN for 12 vehicles (36 parts)

can be approximated by a normal distribution. This assumes independent failures.

However, when plotting the data for 96 vehicles a very different distribution is displayed,

as seen in Figure 15. In fact, Figure 15 shows this relationship occurs for other torsion

bars as well. This implies that part failures cannot be assumed independent of each other

(both failures for a given part and failures for two different parts). For two AAVs, Figure

16 shows the difference between an independent relationship and a dependent

relationship for NIIN 015421278. Two dependencies exist. First, for a given part there

are multiple failures. CIPOM considers this using the convolution technique explained in

56

Appendix A. The second dependency is for multiple parts (among parts). CIPOM ignores

this situation, as it is too difficult to convolve within the optimization. The OMT uses a

bootstrapping technique in order to determine the proper probability distribution for part

failures [26]. This is done by randomly selecting a PEI from historical data.

Figure 14. The probability distribution of NIIN 015421278 for 12 vehicles (36

parts) is approximately normal when using a binomial distribution.

Source: [1] J. Salmeron, A. Buss, T. Curling and M. Kress, “Plant utilization at Marine

Corps Logistics Command,” Naval Postgraduate School, Monterey, 2014.

Figure 15. Distribution based on actual data for four different torsion bars.

Histograms indicate part failures for torsion bars are not

independent. If one torsion bar is in serviceable condition, then all

torsion bars are likely serviceable. The converse is true for an

unserviceable torsion bar.

Source: [1] J. Salmeron, A. Buss, T. Curling and M. Kress, “Plant utilization at Marine

Corps Logistics Command,” Naval Postgraduate School, Monterey, 2014.

57

Figure 16. Graph shows the difference between an independent relationship and

a dependent relationship for NIIN 015421278.

Source: [1] J. Salmeron, A. Buss, T. Curling and M. Kress, “Plant utilization at Marine

Corps Logistics Command,” Naval Postgraduate School, Monterey, 2014.

2. Order History Analysis

Order history analysis of selected NIINs found MDMC provided order history

data to be statistically insignificant. The provided order history data includes 178,198

orders going back two years. Of the 18 NIINs requiring analysis, only nine NIINs had

sufficient associated data in order to allow for statistically significant estimation of

arrivals. Associated data includes NIIN price, deficiency for NIIN, and at least one order

per NIIN. For this analysis, a Java program was created to filter parts order data and

output as histograms. The histograms show for each NIIN the number of order

occurrences by lead-time. Of the nine NIINs having sufficient associated data, the

maximum sampling size that occurred is 27, as shown in Figure 17. The figure shows that

over 65 percent of parts ordered appear to have been immediately available when

ordered. However, orders took from 120 to 600 days to arrive when the parts were not

available. Without a larger sampling size and normal distribution of parts order history,

these data are statistically insignificant. An investigation of the validity of the MDMC

provided data was not conducted. It is possible that parts were procured outside of the

system through various methods. Because of this finding, the primary objective of this

58

thesis is to demonstrate a proof of concept. For MDMC to use the OMT for future

analytical research, it is critical to use accurate and statistically significant data.

Nonetheless, important insights as to how the OMT can assist MDMC will be explained

in future sections.

Figure 17. Order analysis from MDMC provided data. This figure provides a

snapshot of the order history for a required NIIN.

B. PROGRAM VERIFICATION

The goal of the verification process is to ensure the DES program functions as

programmed. As discussed earlier, this is a critical step in ensuring the simulation and all

of its components can be successfully validated. If the program is not verified functional,

it cannot be validated against the real world process. It is important to note that the

functionality of the simulation was continuously verified throughout the development

process. By the time the final component of the program is developed, there were very

few to zero unknown discrepancies. Only unresolved discrepancies will be mentioned, all

 59

of which had to do with the data rather than the model’s functionality. These

discrepancies as well as the key findings affecting the model development will be

explained over the next section. This will include discussing unserviceable parts

distribution, unserviceable parts distribution csv file, negative part balances, and large

parts requirements.

1. Unserviceable Parts Distribution CSV File

The OMT processes NIINs in the order received when generating the

NIN_histogram.csv file. While negligible, the order of NIINs within the.csv file does

matter. This is indicated when running CPIOM with NIINs placed in different orders

within the .csv file. An explanation for why this exists is unknown, but it is nonetheless a

consideration to take into account for future work. This is only relevant to CPIOM.

2. CPIOM Failures for Large NIIN Orders and PEI Quantities

Exceeding established parameters within the CPIOM will result in a failed

solution and subsequent DES failure. If a failure occurs, review the input data and adjust

the CPIOM as necessary. During testing, two failures occurred when running the OMT.

However, failures for other reasons may occur as input data sets expand. The two failures

encountered during our testing were the result of parameters being exceeded for the

maximum number of vehicles (nK) and total number of possible orders of a given NIIN

(H) in any run. Increases to the nK and H values allowed for successful calculation.

3. Elimination of Analyzed NIIN for Insufficient Data

For NIINs requiring analysis, the OMT will automatically eliminate NIINs for

which insufficient data are available. This will occur when the NIIN does not have an

associated order history, condition history, unit price, or required quantity for a PEI. If

the NIINs requiring analysis are missing within the optimization output, check to see if

information is missing for that part.

 60

4. Future Negative Parts Balances

When running the simulation, there are times when the initial parts balance is

negative. This is normal. On occasion, CPIOM’s recommended quantity of parts ordered

falls short of expectations. This has to do with the probabilistic nature of the modeled

system. For example, there are situations where consumption of a particular NIIN is

abnormally high for the order quantity. This results in initial quantities being negative.

Recall that the CSV File Creator Class is responsible for calculating the correct initial

parts balance.

C. CPIOM AND DES INTERFACE VALIDATION

Using the original baseline test case discussed in chapter two, the DES program

verified that the CPIOM was interfacing properly with the DES. This was accomplished

by stopping the simulation in stream and running the CPIOM independently using the

same input variables used within the DES program, namely the current inventory. If the

independent CPIOM run matched up with the DES program CPIOM run, the interface

was confirmed to be working properly.

D. SCENARIO

With the OMT verified, an arbitrary sample scenario was used to demonstrate the

utility of the OMT. Key input variables for this scenario are found in Table 3. The

scenario is designed to handle only one vehicle type. The vehicle type for this scenario is

the AAV. This scenario uses a triangle distribution for assembly and disassembly times

centered on 3 weeks and 7 weeks respectively for a total mean processing time of 10

weeks per vehicle. This equates to a total mean value of fifty work days assuming there

are no modifications to the production schedule. A total of six NIINs will be used in this

scenario. NIIN lead time distributions are generic and range from 1 day to 6 months. The

lead times are derived as discussed in the Lead Time Selector Class section. The

conditions of individual vehicles are generated using fiscal year 2012 and 2013 data for a

total of 96 AAV. The scenario is set up to process a total of 12 AAVs per quarter for one

full year. Each time new vehicles arrive into the system, parts will be ordered according

to the CPIOM output. The vehicles will arrive in bulk (i.e., there will be no delay from

 61

one vehicle arriving to the next). The simulation will conclude at the end of the

simulation year. The production plant is capable of processing 12 vehicles at a time.

There are no limitations in regards to available employees at this time.

Table 3. This table reflects the key scenario input variables used for the

OMT demonstration.

Variable Value

Optimization Period 3 months

Safety-Stock Budget $50,000

Simulation Time Period 1 year

Total NIIN types 6

Total AAVs Per Optimization Period 12

Total Work-Bays Available 12

Assembly Time Per AAV 35 work days (ranges from 30–42 days)

Disassembly Time Per AAV 15 work days (ranges from 13–17 days)

E. STATISTICAL OUTPUT

The primary focus of this particular simulation run is aimed at determining the

overall effect of the CPIOM output on plant production effectiveness and efficiency.

There are a total of five specific metrics being produced by this demonstration. The first

four are measures of performance showing how well the plant utilizes its resources and

where inefficiencies may exist. This includes the average delay a PEI incurs prior to

being disassembled and reassembled, the total average time a PEI is in the system, and

the average utilization rate of the plants assembly bays. The fifth metric, production rate,

is the bottom line of how well the plant achieves its production mission. For this

demonstration, the program is set up to run the one-year scenario a total of one thousand

repetitions.

1. Simulation Steady State

Prior to running a scenario for analysis, it is important to establish the

simulation’s steady state through statistical analysis. Since the system being modeled

does not start from scratch, the simulation needs to “warm up” in order to remove any

bias associated with the (somewhat arbitrary) initial state. As in the real world, there is

62

the possibility of previously existing PEIs and NIIN orders existing at the beginning of

any given year. In order to determine a steady state, the simulation will run multiple

iterations until reaching a steady state. For this scenario, the first iteration will involve

running the scenario previously explained for one year. The second iteration will run the

simulation for a total period of two years with only the second year’s statistical data

recorded. The third iteration will run the scenario for a period of three years with only the

third year’s statistical data recorded. Subsequent iterations will follow this pattern until a

steady state is achieved. Determination of when the steady state is achieved is

accomplished by comparing the statistical data for the production rate variable from one

iteration to the next. If no significant difference exists, then the assumption is that a

steady state has been achieved. The results of the iteration achieving a steady state are

used for further examination of the system being analyzed. Figure 18 shows the

comparative analysis of five simulation iterations. The steady state is not achieved until

the fourth year of simulation.

Figure 18. Steady state analysis for the scenario required the simulation to run

for four years before reaching a steady state.

63

2. Average PEI Delay in Arrival Queue

All PEIs will arrive in the arrival queue at the same time. If a work bay is

available, the PEI will immediately fill the bay and no delay in the arrival queue is

incurred. Figure 19 reflects a relatively small delay in the arrival queue, averaging about

seven workdays for 13.5 percent of the simulation runs. In rare instances, delays of up to

27 workdays occur. However, over 50 percent of simulation runs show delays ranging

between three to eleven workdays. One important note to make about this metric is that it

does not factor in the delay incurred upon the simulation ending. The delay is only

calculated at the time the PEI leaves the queue. This also applies to the assembly queue

delay metric explained next. As a result, the actual delay is possibly slightly higher than

what is actually being captured by the DES. Nonetheless, the general idea of what may

happen can be deduced.

Figure 19. Simulation results reflect a relatively small PEI delay in the arrival

queue. The average delay is about seven work days for 13.5 percent of

the simulation runs. In rare instances, delays of up to 27 workdays

occur.

64

3. Average PEI Delay in Assembly Queue

Once the PEI has been completely disassembled, the PEI is placed into an

assembly queue until it can be reassembled. If parts are available to reassemble the PEI, it

will immediately enter the assembly process and no delay in the assembly queue is

incurred. Figure 20 shows about 45 percent of simulation runs having an average delay

within the assembly queue ranging from seven to ten workdays. The delay existing within

the assembly queue is purely the result of parts not being available. In instances where

severe parts deficiencies exist, this will most likely have an effect on arrival queue delay.

Seeing that there are sufficient bays available and the frequency of arriving parts is not

severely deficient, delays existing within the arrival queue exist due to a backlog in the

assembly queue. Because of the optimization component within the DES, the simulation

is able to optimally adjust to the stochastic nature of arriving parts. Again, the delay

represented in Figures 19 and 20 is most likely higher due to the assembly queue delay of

existing PEIs not being captured at the end of the simulation run. In other words, this is a

conservative representation of delay incurred.

Figure 20. PEI average delay within the assembly Queue. The simulation results

in about 45 percent of simulation runs having an average delay ranging

from seven to ten workdays.

65

4. Average PEI Time in System

The overarching metric covering delay of production time is captured by the

average PEI time in system metric. This statistic is particularly useful when looking at the

system from a holistic standpoint. While inefficiencies may exist within certain locations

of the process, they may be acceptable from a holistic perspective. There may be

situations where it may not be feasible to reduce the delay in a certain location. It shows

the combined effect of delay and production time. Figure 21 reflects no observations of

PEIs incurring zero delays in production time. The majority of runs reflect average PEI

total time in system between 61 to 72 days. In this scenario, managers can expect overall

production to be delayed by 12 to 22 days in 57 percent of simulation runs. This would be

an important point to consider when evaluating the utilization of human resources. The

current simulation model only considers work bays. Future simulations may include

adding employees as a state variable in order to track worker downtime. An example of

this is seen in the next section when discussing production line utilization rates.

Figure 21. Average total time of a PEI in the system. Managers can expect

overall production to be delayed by 12 to 22 days in 57 percent of

simulation runs. Within the scenario, it takes 50 work days to

produce a PEI on time.

66

5. PEI Production Line Average Utilization Rate

Showing the utilization of production resources may be a useful indicator of

where inefficiencies may exist within the process. If even a small deficiency exists, it

may allow for critical adjustment to the production process in order to cover shortfalls in

other areas. For this simulation, the average utilization rate for the PEI production line

reflects the percentage of bays being used throughout the simulation. From Figure 22, the

average utilization rate for the production line is 100 percent during 14 percent of all

simulation runs. 100 percent of the runs have a bay utilization rate greater than

90 percent. The situations where lower utilization rates exist within this DES construct is

the result of too many bays existing in the first place and/or PEIs completed ahead of

schedule. Because of these two situations, bay vacancies are created thereby reducing the

utilization rate. When analyzing the utilization rate, it is important to take overall delay

within the system into consideration. The combination of high utilization rates and low

delay rates indicate the system is running optimally. Assuming few parts order delays, a

high utilization rate with a high delay rate may point to inefficiencies within the system.

In this case, we see utilization rates between 90 to 100 percent and relatively low delay

rates of 12–22 workdays. These metrics can be compared to established parameters for

determining estimated system efficiency and effectiveness, if such exist.

67

Figure 22. Work-bay utilization rate. During 14 percent of all simulation runs,

the average utilization rate for the production line is 100 percent. All

runs have a bay utilization rate greater 99 percent.

6. PEI Production Rate

The production rate is viewed as the primary measure of effectiveness. This

metric is the percentage of total PEIs produced for PEIs entering the production process

at the end of each simulation run. While the optimization model will provide the best

combination of NIINs and associated quantities to order, it will not portray the variability

in production output as a simulation can. From Figure 19, the simulation reflects over

90 percent of runs will fall short of the full production rate even with optimal order

quantities being used. As discussed within the steady state analysis, the mean production

rate achieved over one thousand simulation runs is 97.2 percent.

68

Figure 23. Histogram for production rate. The simulation reflects over

90 percent of runs will fall short of the full production rate.

7. Other Metrics

Several state variables could potentially be analyzed depending on the objectives

of the organization. Employee utilization is one example that we mentioned briefly. Other

variables include inventory levels, stock out costs, safety stock costs, and overall

expenditure costs. The complexity of the system being modeled and simulated increases

the complexity of potential analysis. It is ultimately up to the organization to identify the

degree of complexity to model in the system and associated metrics.

 69

V. CONCLUSIONS, RECOMMENDATIONS,

AND FUTURE WORK

Several key insights and observations can be derived from the work provided by

this thesis. In regards to the primary purpose of demonstrating to MDMC the utility of

combining optimization and DES, there are two main observations. First, data input

validation is, not surprisingly, critical to the effective use of any analysis tool that utilizes

optimization and simulation techniques. Without quality historical data to fuel CPIOM

and the DES, the outputs of the simulation will result in an inaccurate representation of

the system. The second observation is that a joint optimization and DES construct

provides valuable information when analyzing a complex stochastic system. In general,

the use of optimization modeling is fundamental when dealing with systems involving

many decision variables. The production lines at MDMC involve thousands of variables

and thereby make them an ideal candidate for applying optimization. Because of the wide

range of complexity and variability existing within the MDMC, DES is an essential

element of the optimization process.

Throughout the development of the OMT program, a building approach has been

used, which allows the program to be easily modified in the future. In particular, CPIOM

and the DES are completely independent within the coding structure. The only element

connecting the two components are the data inputs and outputs. This is important because

it allows developers to make changes in each components code independently. Of course,

if changes result in modifications to output or input structure, this would result in a

corresponding coding adjustment. The building block approach to the design of the DES

allows the developer to increase model complexity incrementally. This is important since

the organization will want to have more than just a single simple component of their

system. This is especially true when parts and employees can be cross-decked among

multiple platforms. For example, if a particular part is utilized by both a tank and a truck

or a painter is required for all PEI types.

This thesis has demonstrated the OMTs practical utility. This includes providing a

user with output metrics for delays within the system, utilization rate for work-bays, and

 70

overall system production rates. The primary OMT output for the scenario in this thesis is

that over 90 percent of simulation runs will fall short of the full production rate.

Additional analysis reveals total delays of 12 to 22 days in 57 percent of simulation runs

and at least a 90 percent work-bay utilization rate among all runs. Using information such

as this provides insights into system efficiency and effectiveness. This in turn can be used

to develop organizational policy. Keep in mind that this demonstration uses a fictional

data set for NIIN order history and simulates a basic system. Future refinements and

complexities can be added depending on organizational analytical and mission objectives.

As the program is developed and refined further, the addition of new components

inevitably results in the ability to analyze additional variables. The DES program is

currently programmed to analyze only five output variables of the system: average PEI

delay in arrival queue, average PEI delay in assembly queue, average PEI time in system,

average work bay utilization rate, and average production rate. Of course, many more

variables can be analyzed depending on the model’s complexity. For MDMC in

particular, financial accounting is an important consideration not currently analyzed

within the simulation. These financial variables include overall safety stock costs, stock

out costs, and budget. These same variables can be further broken down to the costs

associated with individual NIINs. Other variables to consider would be employee

utilization (if employees were explicitly added to the model), inventory stock levels, and

PEI production rates by PEI type. In summary, the effective combined use of DES and

optimization modeling provides a potentially powerful resource for analyzing many

variables within a complex system.

71

APPENDIX. CPIOM MATHEMATICAL FORMULATION

The below information is from [1]. This appendix describes the formulation of the

CPIOM model. After the formulation, the functionality of each constraint involved is

described.

A. INPUT DATA: INDICES, INDEX SETS AND PARAMETERS

i I , critical parts, also known as NINs

v V , vehicle types

iv V , vehicle type that has part i

V

vn , number of vehicles type v

I

in , number of parts i in each iv vehicle

in , total number of parts i. Calculated as
i

V I

v i

v V

n n




b , budget for safety stock level

SO

ic , cost of each stockout of part i

SS

ic , cost of each part i in safety stock (unused inventory)

0

iq , initial stock of part i

0q , one if the initial stock (
0q vector) counts against safety stock budget, and

zero otherwise

1. Approximation of probability distribution for replaceable parts

Method 1 (independent parts): Assumes all part replacements are independent,

even for parts of the same type within the same vehicle. E.g., “a broken torsion bar in

vehicle 1 does not affect the probability that the next torsion bar on that vehicle is also

broken.” The formulation required is as follows:

 72

ip , probability that each part i needs to be replaced. This probability is

estimated based on historical data as follows:

total parts of type i replaced / total parts of type i

iD , random variable for demand (# of parts) i that need to be replaced.

Binomial(,)i i iD n p

ik K , index for probability levels for part i, {0,1,2,..., }i iK n (see below)

,ik ikd p , demand for level k, and probability for that level, for item i:

,ik id k k K  

Pr{ } (1) ,ii n kk k

ik i ik i i i

n
p D d p p k K

k


     

 

Remark: We are modeling ,ik id k k K   because the number of parts is

small and so Binomial(,)i i iD n p . However, if the number of parts were

too large we would have to group parts into other levels.

Method 2 (partial dependence): Assumes part replacements for different part

types within the same vehicle or for the same part type in different vehicles are

independent. However, part replacements of the same type within a given vehicle are not

independent. E.g., “a broken torsion bar in vehicle ‘A’ does not affect the probability that

the vision block on vehicle ‘A’ is also broken; but, it does affect the probability that

another torsion bar on vehicle ‘A’ is broken.” The formulation required is as follows:

inp , probability that n parts of type i need to be replaced, for 1,..., I

in n . This

probability is estimated based on historical data as follows:

total vehicles requiring n parts of type i replaced / total number of vehicles
V

iD , random variable for demand (# of parts) i that need to be replaced in a

vehicle of type iv . That is:

#historical vehicles with replacements of
Pr{ } , 1,...,

number of historical vehicles

V V I

in i i

n i
p D n n n    

iD , random variable for demand (# of parts) i that need to be replaced.

1... V
vi

V

i i

m n

D D




The above convolution (sum of i.i.d. random variables) can be calculated

using the below notation and recursive procedure:

ik K , index for probability levels for part i, {0,1,2,..., }i iK n (see below)

 73

,ik ikd p , demand for level k, and probability for that level, for item i:

,ik id k k K  

1. Calculate 2V V V

i i iD D D  :

2 2

,

0,...,

Pr{ } , 0...2
I
i

V V V V I

ik i ij i k j i

j k n

p D k p p k n

 

    

2. Given , 1V m

iD  , calculate , 1Vm V m V

i i iD D D  :

, 1

,

0,...,

Pr{ } , 0...
I
i

Vm Vm V m V I

ik i ij i k j i

j k n

p D k p p k mn



 

    

3. Stop when
i

V

vm n . Use the last probabilities generated, as follows:

Pr{ } ,
V
iVn

ik i ik ik ip D d p k K    

Remark: If in is large, the distribution of the above convolution may take

a long time to calculate, and we may need to model those parts using other

methods.

1. Decision Variables

iQ , quantity ordered for part i
SO

ikZ , ancillary variable for stockout of part i
SS

ikZ , ancillary variable for parts i in safety stock that apply to the calculation of budget

being used

2. Formulation

SO SOmin
i

ik i ik

i I k K

p c Z
 

 (1.1)

subject to:

Z

ik

SO ³ d
ik

- (q
i

0 + Q
i
) "i ÎI ,k ÎK

i
 (1.2)

SO 0 ,ik iZ i I k K    (1.3)

0SS 0 ,q

ik i i ik iZ q Q d i I k K      (1.4)

SS 0 ,ik iZ i I k K    (1.5)

SS SS

i

ik i ik

i I k K

p c Z b
 

 (1.6)

0 and integeriQ i I   (1.7)

 74

The above formulation prescribes order quantities for each item in order to

minimize expected stockouts (or their expected cost if SO 1ic ), subject to a budget

constraint on expected cost of safety stock. We can post-calculate
SS

i

ik ik

i I k K

p Z
 

 as the

expected safety stock involved in the budget constraint. If
0

1q  , it will be the same as

the expected safety stock. Otherwise (if
0

0q ) the actual expected safety stock will be

more than the above calculation (if there was an initial stock), and can be post-calculated

as
0max{ ,0}

i

ik i i ik

i I k K

p q Q d
 

  . (Note that, in the last case, we include the initial stock

in the calculation of expected safety stock, but do not include it in the calculation of the

cost.)

Alternative options for the objective might include minimizing expected cost of safety

stock, subject to expected number (or cost) of stockouts not exceeding a given value,

which can be easily formulated.

a. Formulation of Chance Constraints

Additional chance constraints, such as “the probability that a certain item has 3 or

more stockouts is under 95percent can be added to the above formation. To do this, we

add the following:

Additional data
SO+,i im p , stockout level for item i and maximum probability that a stockouts of that size

occurs for the item. In the above example, SO+3, 1 0.95 0.05i im p    

Additional Decision Variables
SO+

ikZ , one if the k level of demand produces a stockout for part i that exceeds the

maximum level,
im , and zero otherwise

Additional Formulation
SO+ SO()/ | | ,ik ik i i iZ Z m K i I k K     (1.8)
SO+ {0,1} ,ik iZ i I k K    (1.9)

SO+ SO+

i

ik ik i

k K

p Z p i I


   (1.10)

Note Equation (1.8) forces SO+

ikZ to become 1 when the number of stockouts for demand

level k, i.e., SO

ikZ , exceeds
im . Then Equation (1.10) adds up the probabilities of those

levels, so as not to exceed SO+

ip .

 75

LIST OF REFERENCES

[1] J. Salmeron, A. Buss, T. Curling and M. Kress, “Plant utilization at Marine Corps

Logistics Command,” unpublished.

[2] U.S. Marine Corps 36th Commandant’s planning guidance. 10 January 2015. J.

Dunford [Online]. Available:

http://www.hqmc.marines.mil/Portals/142/Docs/2015CPG_Color.pdf. Accessed

March 25, 2015.

[3] Apache POI- the Java API for Microsoft documents. (n.d.). T. A. S. Foundation,

[Online]. Available: http://poi.apache.org/. Accessed July 15, 2016.

[4] JFree chart. (n.d.). JFree. [Online]. Available: http://www.jfree.og/jfreechart.

Accessed July 15, 2016.

[5] SimKit. (n.d.). Naval Postgraduate School. [Online]. Available:

https://www.diana.nps.edu/simkit/latest/. Accessed December 14, 2014.

[6] C. Almeder, M. Preusser and R. F. Hatl, “Simulation and optimization of supply

chains: Alternative or complementary approaches?,” OR Spectrum, vol. 31, no. 1,

pp. 95–119, 2009.

[7] T. A. Lenhardt, “Evaluation of combat service support logistics concepts for

supplying a USMC regimental task force,” M.S. thesis, OR Dept., Naval

Postgraduate School, Monterey, CA, 2001.

[8] S. Kumar and D. A. Nottestad, “Supply chain analysis methodology—Leveraging

optimization and simulation software,” OR Insight, vol. 26, no. 2, pp. 87–119,

2012.

[9] G. W. Godding, “A multi-modeling approach using simulation and optimization

for supply-chain network systems,” Ph.D. dissertation, Dept. Systems Eng.,

Arizona State University, Tempe, AZ, 2008.

[10] M. Schlegel, G. Brosig, A. Eckert, M. Jung, A. Polt, M. Sonnenschein and C.

Vogt, “Integration of discrete-event simulation and optimization for the design of

value networks,” Computer Aided Chemical Engineering, vol. 21, pp. 1955–1960,

2006.

[11] F. D. Mele, G. Guillen, E. Antonio and L. Puigjaner, “A simulation-based

optimization framework for parameter optimization of supply-chain networks,”

Industrial and Engineering Chemistry Research, vol. 45, no. 9,

pp. 3133–3148, 2006.

http://poi.apache.org/
http://www.jfree.og/jfreechart
https://www.diana.nps.edu/simkit/latest/

 76

[12] Multimethod simulation software. (n.d.). AnyLogic. [Online]. Available:

http://www.anylogic.com/areas/supply-chains. Accessed 22 March 2015.

[13] Top supply chain management software products. (n.d). Capterra. [Online].

Available: http://www.capterra.com/supply-chain-management-software/.

Accessed 22 March 2015 .

[14] Supply chain optimization and simulation on a unified platform. (n.d.).

LLamasoft. [Online]. Available: http://www.llamasoft.com/. Accessed 23 March

2015.

[15] Northrop Grumman Mission Systems, “Depot-level maintenance capacity model

study,” unpublished.

[16] C. T. Radsdale, “Characteristics of Optimization Problems,” in Spreadsheet

Modeling and Decision Analysis, Mason, South-Western Cengage Learning,

2012, pp. 18–20.

[17] A. Buss, “Discrete event simulation modeling,” unpublished.

[18] GAMS.(n.d.). GAMS. [Online]. Available: www.gams.com. Accessed

 March 23, 2016.

[19] CPLEX 12. (n.d.). GAMS/CPLEX. [Online]. Available:

http://www.gams.com/dd/docs/solvers/cplex/index.html. Accessed March 23,

2016.

[20] Argonne National Laboratory Toolkit for Advanced Optimization (TAO). (n.d.).

U.S. Department of Energy[Online]. Available:

http://www.mcs.anl.gov/research/projects/tao/. Accessed April 12, 2016.

[21] ASCEND.(n.d). Carnegie Mellon University. . [Online]. Available:

http://ascend4.org/Main_Page. Accessed April 12, 2016.

[22] Gnu’s Not Unix (GNU) Linear Programming Kit.(n.d.). Free Software

Foundation. [Online]. Available: http://www.gnu.org/software/glpk/. Accessed

April 12, 2016.

[23] NetBeans IDE 8.0.2 Information.(n.d.). Oracle Corporation. [Online]. Available:

https://netbeans.org/community/releases/80/. Accessed April 23, 2016.

[24] R. Cheng, “Determining efficient simulation run lengths for real time decision

making,” in Winter Simulation Conference Washington D.C., United States,

2007.

http://www.gams.com/
http://www.gams.com/dd/docs/solvers/cplex/index.html
http://www.mcs.anl.gov/research/projects/tao/
http://ascend4.org/Main_Page
http://www.gnu.org/software/glpk/
https://netbeans.org/community/releases/80/

 77

[25] A. Gelman and K. Shirley, “Inference from simulations and monitoring

convergence,” in Handbook of Markov Chain Monte Carlo, Boca Raton, Taylor

and Francis Group, LLC, 2011, pp. 163–173.

[26] M. R. Chernick, Bootstrap Methods: A Practitioner’s Guide, New York: Wiley,

1999.

 78

THIS PAGE INTENTIONALLY LEFT BLANK

 79

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

 Ft. Belvoir, Virginia

2. Dudley Knox Library

 Naval Postgraduate School

 Monterey, California

